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1．はじめに

2050 年までのカーボンニュートラルの実現には，
太陽光発電（以後，PV），風力，水力，地熱，バイ
オマス発電などの再生可能エネルギー（以後，再エ
ネ）や原子力発電などの脱炭素技術の活用が必要と
なる．再エネの主たる電源の一つである PV の発電
出力の変動は，太陽高度や日々の天気（日射量）の
変化に依存する．また，積雪や火山灰が PV パネル
を覆った場合には発電出力が低下，もしくは発電で
きなくなる．これらの特徴により，電力を安定に供
給する上で支障をきたす場合がある．
　PV の出力変動対策として，PV 出力予測の導入
とその高精度化が議論されている 1-2）．PV 出力予測
は，数値予報モデルによる前々日・前日予測が主流
であったが，近年，現況から当日予測を対象とした
数時間先予測の活用の試みがなされている．2022
年度からは当日に PV をオンラインで制御する経済
的出力制御（オンライン代理制御）が開始されるな

ど，当日予測の重要性は増している．
　電力中央研究所（以後，当所）では，PV の大量
導入下での電力系統の安定化に寄与するため，気象
庁の静止気象衛星であるひまわり 8 号・9 号の衛星
画像に基づいて日射量の現況の推定と 10 分間隔で
最大 6 時間先までを予測可能な日射量予測・解析シ
ス テ ム（Solar Radiation Forecasting and Analysis
System: SoRaFAS）を開発している 3-7）．
　図 1 に，SoRaFAS を用いてひまわり 8 号・9 号
の衛星画像から日射量を推定・予測するイメージを
示す．図の左から，静止気象衛星ひまわり，衛星画
像（可視画像），衛星画像に基づく空間解像度 1km
の日射量推定結果の分布図，および 12 時を予測開
始時刻とする地点での 6 時間先までの予測結果の時
系列（右上）と当日の 10 分間隔の予測結果の時系
列の履歴（右下）を示す．
　本稿では，2 章で衛星画像予測に用いるひまわり
8 号・9 号の概要，3 章と 4 章で SoRaFAS に用いる
日射量推定手法と予測手法の概要，5 章で衛星画像
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図 1　日射量予測・解析システム SoRaFAS を用いて日射量を推定・予測するイメージ
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3.1　日射量推定手法の概要
　日射量推定手法は，ひまわり 8 号・9 号の可視画
像（観測バンド：B03）と二種類の赤外画像（B13, 
B15）を組み合わせて用いる点に特徴がある．これ
により，雲アルベド（反射率）だけではなく，雲の
厚み（種類）までを考慮して日射量を推定できる．
　式（1）に，全天日射量 S（W/m2）の推定式を示
す．推定式は Dedieu et al. の提案式 9）を基本とし，
快晴時の大気の補正係数α，雲の種類を考慮するた
めの補正係数β，大気路程を考慮した補正係数γで
構成されている．

（1）

ここで，S0 は大気上端の水平な単位面積に入射する
日射量（W/m2）であり，日時と緯度・経度から求
まる．A は大気路程を考慮した雲アルベド，As は
地表面アルベドであり，設定した学習期間（対象日
の前 30 日間）における各時刻の雲アルベド A の最
低値を As として用いる．αは快晴時の大気の補正
係数である．快晴時の大気の補正係数αだけでも日
射量を推定可能であるが，雲アルベドが同じであっ
ても雲の種類によって地上での日射量が異なる場合
がある．このため，雲の種類を判別できるように 2
種類の赤外画像（観測バンド：B13, B15）を組み合
わせることで雲の種類を考慮する補正係数βを追加
している．γは大気路程（太陽光が通過する大気層
の厚さ）を考慮した補正係数である．
　補正係数αとβは，設定した学習期間（対象日の

と数値予報モデルを組み合わせたブレンド手法につ
いて述べ，6 章で今後の展開について述べる．

2．ひまわり8号・9号の気象衛星画像

　SoRaFAS の日射量の推定・予測計算には，気象
庁の静止気象衛星であるひまわり 8 号・9 号の衛星
画像を用いる 8）．ひまわり 8 号は，それまでの静止
気象衛星であるひまわり 7 号に替わり，2015 年 7
月から正式に観測運用を開始した．ひまわり9号は，
2022 年 12 月からひまわり 8 号に替わり，観測運用
を開始した．ひまわり 8 号と 9 号は 2029 年までの
運用が予定されている．
　表 1 に，ひまわり 7 号と 8 号・9 号の日本域にお
ける空間解像度，観測バンド数，観測時間間隔の比
較を示す．表より，ひまわり 8 号・9 号は，観測機
能が大幅に向上していることが確認できる．このた
め，気象予測・防災分野だけでなく，PV 予測を含め，
様々な分野で活用されている．PV 予測分野での普
及には，観測時間間隔の 30 分から 2.5 分への変更
が大きく寄与したと考えている．
　図 2 に，日本海上に日本海寒帯気団収束帯

（Japan-sea Polar airmass Convergence Zone: JPCZ）
発生時の可視画像の雲分布の例を示す．図より，日
本の北側と南側で分けて画像を取得していることが
確認できる．
　天気は基本的に西から東に移動する．このため，
衛星画像を用いた予測では，沖縄の離島などの西側
の境界付近で計算領域を設定した場合，観測をして
いない欠測領域が含まれる場合がある．SoRaFAS
ではこの領域に，同時刻の数値予報モデルの日射量
の予測結果を代入することで対応している．次期静
止気象衛星であるひまわり 10 号では観測領域の拡
大が計画されている．

3．日射量推定手法

　当所で開発している日射量推定手法は，2.5 分間
隔の衛星画像から空間解像度 1km で 1 分間隔の日
射量分布を算出する．以下に，日射量推定手法の概
要とその評価例を示す．

図 2　�ひまわりの衛星画像（日本域，可視 B03）による雲
分布の例（2024 年 1 月 23 日）

表 1　ひまわり 7 号とひまわり 8 号・9 号の比較

衛星直下点における
空間解像度

観測バンド数 観測時間間隔

ひまわり7号
（全球・半球）

可視1km、赤外4km
5バンド

（可視1、赤外4）
30分

ひまわり8号・9号
（日本域）

可視0.5～1.0km、
近赤外・赤外1～2km

16バンド
（可視3、近赤外3、赤外10）

2.5分
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の快晴時，および，平均的な変動傾向を良好に再現
することが確認できる．
3.2.3　誤差評価
　表 2 に，当所我孫子地区と赤城試験センターと計
算領域内の気象官署における日射量の前 10 分平均
値の BIAS，MAE，RMSE，相関係数の比較を示す．
　BIAS の各地点の平均は -8.5W/m2（最小 -28.7 ～
最大 1.8W/m2），MAE は 52.1W/m2（43.7 ～ 69.2W/
m2），RMSE は 77.3W/m2（63.0 ～ 99.9W/m2）， 相
関係数は 0.97（0.96 ～ 0.98）である．図 4 より，4
月の快晴時の日射量が 1,000.0W/m2 程度であること
を考慮すると，当所の観測サイトと学習に用いた気
象官署で同程度の計算精度を有することが確認でき
る．

4．日射量予測手法

　当所で開発している日射量予測手法は，過去と現
在の衛星画像の雲分布に基づいて雲域の移動速度ベ
クトルを求め，ベクトルに基づいて移動させた衛星
画像を日射量に変換することで 6 時間先までの日射
量分布を予測する．
　SoRaFAS には，3 種類の雲域の移動速度ベクト
ルを求める手法がある．ここでは，それらの変遷を
含めた日射量予測手法の概要を示す．それぞれの手
法の詳細は，参考文献に具体的に述べているので参
照されたい．
4.1　日射量予測手法の概要（第1世代）
　第 1 世代の予測手法 3）を説明するために，九州

前 30 日）の気象官署での日射量の観測値と衛星画
像データを用いて日々算出する．
3.2　日射量推定手法の評価
　日射量推定手法を関東エリアに適用し，2024 年 4
月の 1 か月間の推定計算を行い，時系列の再現性と
予測誤差を評価する．
3.2.1　計算条件
　図 3 に，SoRaFAS の計算領域を示す．日射量の
推定計算に用いる補正係数の作成には，計算領域内
に位置する気象庁の気象官署（宇都宮，前橋，甲府，
館野，銚子，東京）の観測値を用いる．推定手法の
誤差評価には，当所の我孫子地区（千葉県我孫子市）
と赤城試験センター（群馬県前橋市）の観測値，お
よび気象官署の観測値を用いる．
　評価期間は 2021 年 4 月とし，1 日毎に学習期間
を変更した補正係数を用いて日射量推定計算を実施
した．推定誤差は，天頂角 85 度未満の条件で，日
射量の前 10 分平均値を用い，平均誤差（ME），平
均絶対誤差（MAE），二乗平均平方根誤差（RMSE），
相関係数について評価した．ME は，推定値と観測
値の差の平均である．
3.2.2　時系列評価
　図 4 に，当所の赤城地区で，厚い雲に覆われた曇
天時と快晴で午後に日射量の激しい変動傾向が見ら
れた 2021 年 4 月 29 日と 30 日における観測値と推
定値の日射量の 1 分値の時系列の比較を示す．
　図より，推定値は観測値と比較して，4 月 30 日
の午後に見られた激しい変動傾向を再現できていな
いものの，29 日の曇天時や 30 日の午前から正午頃

表 2　SoRaFAS の推定値の誤差評価
（日射量前 10 分平均値，2021 年 4 月）

ME(W/m2) MAE(W/m2) RMSE(W/m2) 相関係数

我孫子 -14.6 53.9 77.5 0.97

赤城 -28.7 69.2 99.9 0.96

宇都宮 -4.1 50.7 74.4 0.97

前橋 0.3 53.2 86.0 0.96

甲府 -6.5 51.1 72.7 0.97

館野 -6.2 49.2 78.5 0.97

銚子 -10.1 45.5 63.0 0.98

東京 1.8 43.7 66.2 0.98

図 4　�赤城試験センターにおける日射量の観測値（黒実線）
と推定値（灰実線）の時系列の比較

図 3　�関東エリアを対象とした計算領域と計算領域内で日
射量を観測している気象庁の気象官署と当所の我孫
子地区と赤城試験センターの位置図
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て，持続モデルが高い精度を示して予測計算に採用
された事例などがあることを確認している．
4.2　日射量予測手法の概要（第2世代）
　第 2 世代の予測手法 5）の概要を説明するために，
壱岐島エリアを対象とした計算領域を図 6 に示す．
　雲域の移動予測では，狭領域の S01 と広領域の
S02 の 2 種類の検査領域を設定し，相互相関法を用
いることで移動速度ベクトルを算出し，この移動速
度ベクトルを基に第 1 画像（D01）を移動させる．
ここで，探索範囲は検査領域の 2 倍とする．移動速
度ベクトルの算出に用いる衛星画像には，上・中層
雲だけでなく，下層雲の解析も可能な水蒸気画像（観
測バンド：B08）と赤外画像（観測バンド：B13）
の差分画像を用いる．これは，第 3 世代も同様であ
る．
　次に，移動速度ベクトルの算出では，狭領域 S01
で算出された移動速度ベクトルを uv1（u1, v1），広
領域 S02 で算出された移動速度ベクトルを uv2（u2, 
v2）とし，予測開始から 60 分先までは uv1 に変位
項 uv’ を付加した uv1 ＋ uv’ を用いる．180 分先以
降は uv2 を用いる．60 分先から 180 分先までは，
uv1 と uv2 を組み合わせた uv12 を用いる（式（2））．
式には，180 分先まで移動させた雲域と uv2 のみで
180 分先まで移動させた雲域が同じとなるように変
位項 uv’ を付加している（式（4））．

（2）
（3）
（4）

エリアを対象とした計算領域を図 5 に示す．
　雲域の移動予測では，過去（第 1 画像（D01））
と現在（第 2 画像（D02））の 2 時刻の画像データ
をもとに，2 つの画像の類似度の高い部分を対応付
ける相互相関法 10）を用いることで経度と緯度方向
の雲域の移動速度ベクトルを算出し，この移動速度
ベクトルを基に第 1 画像（D01）を移動させる．移
動速度ベクトルの算出に用いる衛星画像には，地形
の影響を受けない水蒸気画像（観測バンド：B08）
を用いる．移流計算には，時・空間的な位相のずれ
による誤差の低減を目的として，拡散的な傾向を示
す風上差分法を用いる．これは，第 2 世代も同様で
ある．
　次に，移動速度ベクトルの算出では，小さなスケー
ルの直近の雲の動きと大きなスケールの総観的な雲
の動きを予測するために，2 種類の移動速度ベクト
ルをそれぞれ算出し，組み合わせて用いている．直
近の雲の動き（uv1）は 1 時間前と現在時刻，総観
的な雲の動き（uv2）は 3 時間前と現在時刻の衛星
画像を用いて計算する．計算では，予測開始から 1
時間は uv1 を用い，予測開始 1 時間から 3 時間は
uv1 と uv2 を組合せ，3 時間以降は uv2 を用いて雲
の移動速度を用いることで，異なる時間・空間スケー
ルでの雲の動きを予測する．
　第 1 世代の予測では，過去画像が予測期間中一定
で持続すると仮定した持続モデルを追加し，それぞ
れについて 3 時間前から予測開始時刻までの再現計
算を事前に実施し，再現精度が高かった手法を予測
計算に選択した．当所では，この仕組みを品質チェッ
ク手法と呼んでいる．例えば，関東平野において，
日本の南海上に位置する低気圧からの暖湿な大気の
流れに伴って継続的に雲域が流入する時などにおい

図 6　予測計算の計算領域
（D01：第 1 画像，S01：検査領域，S02：検査領域，壱岐エ
リア：表示領域）

図 5　予測計算の計算領域
（D01：第 1 画像，D02：第 2 画像，九州エリア：表示領域）
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の動き（uv2）は 3 時間前と現在時刻の水蒸気画像
を用いて算出している．本手法は，総観的な雲域の
移動を精度高く予測できる一方で，特に 3 時間前と
現在の画像で雲域の移動を適切に予測できず，雲域
の移動を大きく外す場合があった．
　第 2 世代と第 3 世代は，5 章で述べるブレンド手
法の利用を前提に，第 1 世代と比較して検査領域と
探査領域を狭く，比較する画像の時間間隔を短く設
定している．加えて，相互相関に用いる画像を水蒸
気画像から水蒸気画像と赤外画像の差分画像に変更
することで，大外しを低減している．
　第 3 世代は，第 2 世代と比較し，予測開始から 3
時間先までの比較であるが，計算領域の中心だけで
なく，その周辺でも精度高く日射量を予測できるこ
とを確認している．但し，第 2 世代に対して計算負
荷は増大している．

5．�衛星画像予測と数値予報モデルのブレンド
手法

　衛星画像のみを用いた日射量予測では，日の出前
からの予測や数時間先以降の予測（雲の発生・消滅）
に課題を有している．この対策として，衛星画像に
よる予測に数値予報モデル（Numerical Weather 
Prediction：NWP）による予測を併用することで精
度よく予測する仕組みを構築している 5）．衛星画像
予測と数値予報モデルのブレンド式を式（5）に示す．

（5）

ここで，t は経過時間（0 ～ 360 分），z はブレンド
比の経過時間 t に関する関数（0 ～ 1）である．
　曲線の傾き，変化点，数値予報モデルの重みを変
更した約 3 万通りのブレンド曲線の候補を作成し，
蓄積・整理された気象官署での観測値と SoRaFAS
と NWP の予測結果を用い，予測開始時刻毎に最適
なブレンド曲線を日々選定する．参考として，図 8

ここで，t は経過時間（分）である．移動速度ベク
トルの計算は，現在時刻と 10 分前の画像データを
基に算出する．移動速度ベクトルの計算は 5 分間隔
で行い，予測開始時刻の前 30 分間から予測開始時
刻までに算出された 5 分間隔の移動速度ベクトルを
平均して用いる．
4.3　日射量予測手法の概要（第3世代）
　第 3 世代の予測手法 7）の概要を説明するために，
壱岐島エリアを対象とした計算領域を図 7 に示す．
　第 3 世代では，よりローカルな雲域の移動を予測
するために，領域を細かく分割して算出したベクト
ル分布に基づいて第 1 画像（D01）内の雲域の移動
を予測する．
　具体的には，領域 D01 を東西・南北方向に 30 格
子間隔（約 30km）で分割し，分割した格子点を中
心に 40 格子（約 40km）を検査領域，その 2 倍を
探索領域に設定し，各検査領域について相互相関法
を用いて移動速度ベクトルを算出する．
　雲域の移動速度ベクトルは，予測計算開始時に得
られた最新時刻の画像とその 10 分前の画像を用い
る．雲域の移動計算は，計算の安定性と高解像度化
を考慮して，雲の拡散性を風上差分よりも抑えた
TVD（Total Variation Diminishing）法を用いる．
　最後に，移流計算の時間間隔（CFL 条件）を適
切に設定すれば，第 1 世代と第 2 世代で用いる 1 次
の風上差分でも計算可能なことを確認している．こ
のため，計算環境・利用用途に応じて TVD 法と 1
次の風上差分を使い分けている．
4.4　雲域の移動予測手法について
　第 1 世代の雲域の移動予測手法は，6 時間先まで
の相関的な雲域の移動を予測するために，直近の雲
の動き（uv1）は 1 時間前と現在時刻，総観的な雲

図 7　衛星画像と移動速度ベクトルの比較
（図中の白枠の点線は壱岐エリアの表示領域）

図 8　�衛星画像予測と数値予報モデルに用いるブレンド曲
線の例（傾き変化，変化点，重み固定）
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に，SoRaFAS と NWP の組み合わせに用いるブレ
ンド曲線の例を示す．
　ブレンド予測を用いることで，SoRaFAS が不得
意とする日の出前予測の条件や衛星画像予測から数
値予報モデルに有効時間が重なる時間帯において計
算精度が向上することを確認している．

6．おわりに

　本解説では，当日の日射量の現況把握と数時間先
の予測を目的とした気象庁のひまわり 8 号・9 号の
衛星画像に基づく日射量予測・解析システム
SoRaFAS の概要について説明した．
　今後の展開として，日射量推定・予測手法の改良
を継続するとともに，SoRaFAS の日射量推定・予
測に PV 出力推定手法と組み合わせることで 7），電
力系統の安定化に寄与する予定である．加えて，
SoRaFAS と全天カメラを有する複合地上センサと
の連携を進めることで，よりローカルな太陽光発電
設備での予測精度の向上を図る予定である 11）．
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