特集 I ^{脱炭素社会の実現に向けて} CCU (Carbon dioxide Capture and Utilization) 特集 CO₂の電気化学還元とその応用利用に 関する最近の研究動向

Recent Progress in Study on Electrochemical CO₂ Reduction Reaction and its Application

山内美穂*

 $E^0 = -0.1$ V vs RHE

1. はじめに

CO₂の電気化学的還元反応(CO₂-eRR)により CO₂からCO,エチレン,アルコールなどの有用な 化学物質が作られる. 将来的に, 再生可能エネルギー から作られる電力の価格が大幅に低下し、電力と水 などのユビキタス資源をつかって CO。から効率よ く化学物質を作製できるようになれば、CO2は化学 工業における重要な炭素源になると期待される. 最 近, CO₂から天然ガス(CH₄)を製造する技術とし てメタネーションが注目されている. メタネーショ ンでは、 CO_2 と H_2 の反応により CH_4 と H_2O が生成 する. カーボンニュートラルを実現するためには, 水素源として CO2 排出なしに製造されるグリーン H₂を用いる必要がある.水を電気化学的あるいは 光触媒的に分解して製造されるグリーン水素を使う 場合は、H2製造とメタネーションの二段階のプロ セス構成となる.

他方, CO₂-eRR では, H₂O の酸化と CO₂ の還元 を一つの電気化学反応プロセスとして扱うことがで きる. CO₂-eRR におけるアノードでの水の酸化反応 は

 $2H_2O \rightarrow 4H^+ + 4e^- + O_2 E^0 = 1.23 V vs RHE$ と記述される. 一方, カソードでは, CO_2 から様々 な物質が生成する可能性がある. 以下に, いくつか の化学物質が制する場合の反応式を示す. $CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O$

 $E^{0} = -0.1 \text{ V vs RHE}$ $CO_{2} + 2H^{+} + 2e^{-} \rightarrow \text{HCOOH}$ $E^{0} = -0.12 \text{ V vs RHE}$ $CO_{2} + 2H^{+} + 2e^{-} \rightarrow \text{CO} + \text{H}_{2}\text{O}$ $E^{0} = -0.1 \text{ V vs RHE}$ $CO_{2} + 6H^{+} + 6e^{-} \rightarrow \text{CH}_{3}\text{OH} + \text{H}_{2}\text{O}$

 $CO_{2} + 8H^{+} + 8e^{-} \rightarrow CH_{4} + 2H_{2}O$ $E^{0} = 0.17 V vs RHE$ $CO_{2} + 2H^{+} + 2e^{-} \rightarrow CO + H_{2}O$ $E^{0} = -0.1 V vs RHE$ $2CO_{2} + 12H^{+} + 12e^{-} \rightarrow C_{2}H_{5}OH + 3H_{2}O$ $E^{0} = 0.09 V vs RHE$ $2CO_{2} + 12H^{+} + 12e^{-} \rightarrow C_{2}H_{4} + 4H_{2}O$ $E^{0} = 0.08 V vs RHE$

これらのカソード反応の平衡電極電位は – 0.1 – 0.17 V (vs RHE) であるので、 CO_2 -eRR 反応を 進行させるためには、電極反応系に 1.06 – 1.33 V のバイアス電圧をかければ良い. しかしながら、 CO_2 を溶解させた水溶液を使って電気化学反応を行 うと、多くの場合、水素が生成するのみで CO_2 の 還元生成物を得ることができない. これは、水溶液 中に溶けている CO_2 よりも圧倒的に水分子の数が 多いことと、無極性で、反応性の低い CO_2 分子と 電極 (触媒) との相互作用が弱いことが原因である.

千葉大学名誉教授の堀先生は、世界に先駆けて Cuが電極触媒として高い CO₂eRR 活性を示すこと を発見した.これをきっかけに CO₂eRR 触媒の研 究が本格的に始動したといわれている.本稿では、 Cu 触媒についての研究例を紹介するともに、これ までに明らかとなった CO₂eRR 触媒の開発指針を 解説する.

2. CO₂-eRR 触媒の発見

堀先生は,様々な金属 Cu, Au, Ag, Zn, Pd, Ga, Ni および Pt 上 での CO₂-eRR 特 性 を 調 べ, CO₂-eRR における生成物によってこれらの金属の分

^{*}九州大学カーボンニュートラル・エネルギー国際研究所 教授

類を行った¹⁾.表1に示すように,CO,ホルメート(HCOO⁻)あるいはH₂を生成する金属,そしてCuの4種類に分けられている.

表1 金属と主な CO2 還元生成物

金属	生成物
Au, Ag, Zn, Pd, Ga	со
Pb, Hg, Tl, In, Sn, Cd	HCOO-
Ni, Fe, Pt, Ti	H ₂
Cu	HCOO ⁻ , CH ₄ , C ₂ H ₄ , C ₂ H ₅ OH

最近,計算化学のアプローチにより、このような 金属上での生成物選択性に違いが現れる要因につい ての研究が行われている. 密度汎関数理論 (Density Functional Theory, DFT)を用いた量子化学計算に より、反応分子や中間体と触媒表面との結合エネル ギーを求めることができる. Nørskov らは反応中間 体の結合エネルギーと反応素過程における遷移状態 のエネルギーと相関があることを明らかにした²⁰. 具体的にいうと、触媒表面に結合した化学種の結合 エネルギーをパラメータとして用いることで、触媒 反応の素反応が進行するために必要な電圧を計算す るというものである. 例えば、CO₂の8プロトン付 加と8電子還元を介してCH4が生成する場合を考 える.この反応では7つの吸着中間体が生成する素 過程が存在する. これらの素反応の進行に必要とな る電圧は反応中間体である CO 種と金属表面との結 合エネルギーによって記述することができる²⁾. CO種と結合エネルギーが大きい金属上では、より 小さい電圧印加によって中間体の生成が起こるが、 一方で、結合エネルギーが大きすぎると生成物の解 離が起こりにくくなるため、反応の進行が妨げられ ることになる. したがって、Nørskovらの考え方は、 素反応の進行に必要な過電圧を明確にすることで、 Sabatier の原理をより定量的に表したものであると いえる.これにより、CuがCO2-eRRにおいて高い 活性を示し、多様な生成物を生成するのは、CO₂お よび反応中間体分子と適度な結合エネルギーを持つ ためであると理解することができる.

3. Cu ナノ粒子触媒上での生成物選択性を決める要因

3.1 結晶面

堀先生らは、特定の面が表面に現れた単結晶電極 を作製して、電極上での生成物分布を詳細に調べた ³⁾. CO₂eRR における生成物選択性は、投入された 電荷量のうち、注目する化合物の生成のために消費 された割合をしめすファラデー効率(Faradaic efficiency, FE)から知ることができる.ファラデー 効率(Faradaic efficiency, FE)は以下の式で表される.

$$FE (\%) = \frac{n \times m \times F}{Q}$$

ここで, *n*, *m*, *F*, *Q*は, それぞれ, 1 mol の生成物 の生成に必要な電子数,生成物のモル数,ファラデー 定数 (96,485 *C* mol⁻¹),回路を流れた電荷量 (*C*) である.

堀先生が実験を行なった結果, C2 化合物である エチレンの生成に着目すると,(111)面上における エチレン生成の FE は 8.3%であるが,(100)テラ スをもつ触媒上ではエチレン生成の FE は 40.4%と 大幅に増大することが明らかとなった.このように C-C 結合を有する生成物の形成を促進することは, Cu 触媒の大きな特徴である.さらに,(100)基底 面上に(111)あるいは(110)ステップが存在する 場合には,エチレン生成の FE がさらに向上するこ とも明らかにしている.最近,立方体や接頭多面体 など,形状が制御された Cu ナノ粒子が作製される ようになっている.形状制御された Cu ナノ粒子を 使って CO₂-eRR 試験を行なった場合も,(100)面 のみが露出している立方体 Cu ナノ粒子上で高い C₂H₄ 選択性が現れることが確認されている.

3.2 粒子サイズ

触媒のサイズによっても生成物選択性が大きく変 化する. Raske らは, 直径 2-15 nm の粒径が制 御された Cuナノ粒子を作製し、生成物分布のサイ ズ依存性を明らかにした4). その結果, 直径が5 nm以下の粒子上ではH₂やCOが主生成物となるが, 一方で、15 nm 以上の粒子上では CH₄ やエチレン の生成の FE が大きくなることがわかった. これは, 粒径の小さな Cu ナノ粒子には、他の金属との結合 を十分に形成していない低い配位数を示す表面原子 が多く含まれていることに関係している. さらに、 DFT 計算を使って Cu ナノ粒子の構造と中間生成 物の結合エネルギーの関連性が詳しく調べられた. その結果,小さい配位数をとる表面原子は H 種や CO種と強固な結合を作るため、C-HやC-C結合を 生成する素反応が進行しづらいことが明らかとなっ た.

4. 反応セルと電極形状

CO₂-eRR には反応容器に合わせて多様な形状の電 極および触媒が用いられる.まず,H型ガラスセル

図1 H型(左)とフロー型反応セル(右)

などのバッチ式の反応セルを用いる場合は、Cu板 を電極・触媒として用いることができる(図1). 1994年に堀先生らが発表した論文中の実験では、 電極として研磨された高純度のCu板(99.99%)が 使われた¹⁾. 一般的に、バッチ式のセルを利用する 場合、電解質水溶液へのCO₂の溶解度(33 mM) によって制限されるため、還元反応の速度を示す電 流密度は数十 mAcm⁻² 程度となる.

反応速度を向上させるために、電極触媒に反応ガ スを直接吹き付けるフロー型のセルが開発されてい る.フロー型のセルには、プロトン交換膜型 (proton exchange membrane, PEM) 水電解水素製造装置 と同様に、膜電極接合体 (MEA)を用いる MEA 型と、電極と電解質の間に電解質溶液を流通させる マイクロ流路型の二つのタイプがある.MEA 型は セルの厚みを薄くできるため、セル抵抗の小さい高 効率の反応セルとして期待されるが、良好な反応ガ スー触媒-電解質膜の三相界面を構築するために、 CO₂ ガスの供給法、電解質膜の種類、ガス流路など を最適化する必要があるため、現時点ではあまり用 いられていない.

他方,著者が所属する九州大学カーボンニュート ラル・エネルギー国際研究所(I²CNER)のPIであ るイリノイ大学のケニス教授は、カソードとアノー ドが電解質溶液で分離されているマイクロ流路型の 反応装置を開発している⁵⁾.この装置では、ガス拡 散層(gas diffusion layer,GDL)を通過したCO₂ ガスが、触媒と電解質溶液と良好な三相界面を形成 するため、CO₂eRR反応が効率よく進行する.その 結果、マイクロ流路型の装置を使った実験では、数 百 mAcm⁻²程度の比較的大きな電流密度が観測さ れている.また、液体を透過しないGDLが電極に 塗布されているため、電解質水溶液に溶解する液体 生成物と、GDL透過する気体生成物が自動的に分 離されるため、ガス成分のみを取り出す場合には都 合が良い.

5. マイクロ流路型反応セルを使った CO₂eRR

5.1 Cuナノ粒子触媒の合成

先に述べたように、Cu触媒はC2化合物生成の 選択性が高いことが大きな魅力である.また、C2 化合物を作製するためには、15 nm 上の大きさをも つ触媒であることが望ましいことも明らかとなって いる.そこで、我々は、数十 nm 程度のドメインを もつ Cu ナノ粒子触媒を簡便に作製する方法を検討 した⁵⁾.

まず,活性な触媒表面を露出させながら大きな反応面積を持つCu触媒を作製するために溶媒と添加剤の検討を行なった.一般的に,化学還元法により金属ナノ粒子を作製する場合には,粒子成長を抑制するために,金属表面と比較的強い相互作用を示す配位子やポリマーなどの添加剤を混合することが多い.その場合,金属粒子の粒径は制御されるものの,活性な触媒表面が失われることが問題となる.そこで,我々は,Cu表面と弱く相互作用すると考えられる2-エトキシエタノールを溶媒として選択した.また,添加剤として金属表面と強い結合を作らないクエン酸を選んだ.表2に作製した試料の名称と溶

表2 Cu ナノ粒子触媒の作製に使用した溶媒と添加物,お よび粒子の平均サイズ

試料名	溶媒	添加物	サイズ
Cu-1	2-ethoxyethanol	なし	26 nm
Cu-2	水	なし	26 nm
Cu-3	水	クエン酸	23 nm
Cu-4	2-ethoxyethanol/水 (v/v: 50/50)	クエン酸	15 nm

図 2 (a) Cu-1, (b) Cu-2, (c) Cu-3, (d) Cu-4 お よ び (e) 市販されている Cu 粉末 (Cu-comm) の TEM 像

媒と添加物をまとめて記す.

作製した触媒の TEM 観測では(図2),溶媒に よる粒子サイズの顕著な変化はみられなかった (Cu-1, Cu-2).しかしながら、2-エトキシエタノー ルを使った場合は、表面に凹凸が現れることがわ かった.一方で、クエン酸を混合させることで粒子 サイズが減少し、2-エトキシエタノールとクエン酸 を両方用いると、最も小さいサイズの Cu 粒子が得 られることが明らかとなった.また、市販の Cu 粉 末 (Cu-comm)は直径 40 nm 以上の大きな粒子と、 数 nm 程度の小さな粒子の混合物であることがわ かった.

5.2 Cuナノ粒子触媒の CO₂-eRR 特性

電極触媒としてCuナノ粒子,電解質として1M KOH 水溶液を用い、Kenis 教授が開発したマイク ロ流路型セルを使用して CO₂-eRR を行った. その 結果, Cu-1を使った場合の, エチレンとエタノー ルの生成の最大の電流密度は、それぞれ、150、45 mAcm⁻²と比較的大きな値となった.次に、各生成 物のFEの電位依存性を調べた。H2生成のFEをみ ると、比較的小粒径の粒子を含む Cu-4 と Cu-comm は高い値を示した.これは、先ほど触れた Raske らの報告と同様な傾向である.一方で,Cu-1上では, - 0.4 V vs RHE より正の電位で CO が最も多く生 成し、それより負の-0.58 V vs RHE においてエチ レンとエタノール生成の FE が最大となることがわ かった. また. C2 化合物生成の FE は 46% と. 当 時としては最も大きな値となった. 電気容量を測定 し、触媒界面の荒さを評価したところ、Cu-1 が最 も高い容量を示すことから、最も荒い表面をもって いることがわかった.この表面粗さの程度は、高い C2 化合物選択性を示す要因の一つであると考えら れる 5).

6. Cu-Pd ナノ合金の元素配列と CO₂-eRR 活 性

6.1 CuPd ナノ合金の合成

反応分子はいくつかの表面原子と相互作用する.

図3 (a) 規則型, (b) 不規則型, (c) 相分離型ナノ合金 の構造

したがって、反応分子の結合エネルギーは金属の表 面組成と元素配置によって変化するため、それらは、 触媒反応に大きな影響を与える要因となると考えら れる. 我々は、Cu 触媒上での水素付加を促進させ る目的で、水素吸蔵能を有し、水素と強い相互作用 をしめす Pd を Cu に固溶したナノ合金触媒の作製 を行なった⁶⁾. Cu と Pd は共に面心立方(fcc)構 造を取る金属であるが、Cu: Pd = 60:40を中心 に B2 型と呼ばれる、体心立方(bcc)格子の頂点 と体心位置を別の元素が占有する規則構造が現れる (図 3a). そこで、規則型、不規則型(図 3b)、さら には相分離型(図 3c)の Cu-Pd ナノ合金を作製して、 それらの活性を比較することで、元素配列が CO₂eRR に与える影響について検討を行なった。

Cu-Pd ナノ合金の合成には、先ほど示した Cu ナ ノ粒子の作製法と同様に2-エトキシエタノールを 溶媒として利用する化学還元法をもちいた、構成金 属が良く混合されている固溶体ナノ粒子を作製する ためには、溶液中の全てのイオンを同時に還元して、 ナノ粒子を作製するのが良いと考えられる. Pd/Pd²⁺とCu/Cu²⁺の酸化還元電位は0.95 および 0.34 V vs. SHE と異なるため, 弱い還元剤を使って 合金を作製すると、反応を進行させるための昇温過 程でPd とCuが別々に還元されると予想される. そこで、比較的強い還元剤である NaBH₄ を用いて 原料金属イオンを同時に還元することにより CuPd ナノ合金の作製を試みた⁷⁾. 著者らは、これまでの 研究により、不規則型のナノ合金を水素雰囲気下で の加熱処理を行うことにより合金の規則化が促進す ることを明らかにしている⁸⁾.そこで,不規則型ナ ノ合金を H₂ 流通下, 573 K で処理することによっ て規則型 CuPd ナノ合金を調製した.図4に作製し

図4 規則型 (a, d), 不規則型 (b, e), 相分離型 (c, d) CuPd ナノ合金の HAADF-STEM 像(上)と EDS マッ プ像(下). a, b, c と比較して色の濃い部分に Cu が 存在する (d, e, f).

た CuPd ナノ合金触媒の高角散乱環状暗視野走査透 過顕微鏡(HAADF-STEM)像(上段)およびエネ ルギー分散型 X線分光(EDS)による元素マップ(下 段)を示す.相分離型 CuPd ナノ合金の EDS マッ プ(f)では,暗い色に対応する Cu と明るい色の Pd が別々の場所に分布しているが,それ以外の CuPd ナノ合金上では,合金全体に Cu と Pd が分布 していることがわかる.詳細な構造を調べるために 粉末 X線回折を測定すると,不規則型 CuPd では, bcc 構造に帰属できるブロードな回折が観測され た.他方,水素下で処理した試料の回折パターンに は,B2型に特徴的な 001 回折が観測されたことから, 規則 CuPd ナノ合金が生成したことを確認された.

6.2 Cu-Pd ナノ合金の CO₂-eRR 特性

図5に、マイクロ流路型セルを用い、-0.78 V vs RHE で1M KOH を流通させながら CO₂eRR を 行なった場合のCuPdナノ合金上で生成物分布(FE) を示す.規則型 B2 CuPdナノ合金上では、70%以 上の高い FE で CO が生成することがわかった.し かしながら、C2 化合物はほとんど生成していない (FE<5%).相分離型ナノ合金上では、エチレンと エタノールの生成の FE がそれぞれ 48,15%となり、 C2 化合物生成の FE が 63%と、論文を発表した時 点では、世界最高の C2 選択性を示すことがわかっ た⁶⁾. また、不規則 CuPd ナノ合金上では、規則型 と相分離型ナノ合金上で観測された結果を平均した ような生成物分布が得られたことから、元素配列が CO₂eRR における生成物選択性に大きな影響を与え ることを与えることが明らかとなった.

100 HCOO. ⁻aradaic Efficiency (%) EtOH **EtOH** 80 H₂ C_2H_4 60 H₂ C₂H₄ 40 CO CH₄ H_2 20 CO CO 0 規則B2型 不規則型 相分離型

図5 規則型 B2 型, 不規則型, 相分離型 CuPd ナノ合金上 での CO₂-eRR における各生成物に対するファラデー 効率

次に. 元素配列が選択性に影響を与えるメカニズ ムを検討した. これまでに、Nørskovらは、さまざ まな金属の電子状態と触媒反応の関連性について量 子力学的視点から検討を行い. d バンドの重心位置 と触媒特性が大きな相関を示すことを明らかにして いる⁹⁾. そこで、我々は、単純金属ナノ粒子および ナノ合金表面の光電子スペクトルを測定することで 価電子帯のエネルギー状態を調べた⁶⁾. その結果. 相分離型 CuPd 合金の d バンドの重心は最も低いエ ネルギーの位置にあり、Cu ナノ粒子が最も高い位 置にあることがわかった.一般的に,重心がより高 いエネルギーを有する場合に, 触媒表面と反応分子 との結合には反結合性軌道からの寄与が少なくなる ため、とより強い相互作用が生まれ、触媒反応が加 速されると言われている. しかしながら, 最もC2 生成に高い活性を示した相分離型 CuPd ナノ合金の バンドの重心は最も低いエネルギー位置にあること から. ナノ合金上での触媒特性を単純に*d*バンドの エネルギー状態と結びつけることができないことと 考えられる.

次に、組成の異なる不規則型ナノ合金の反応特性 を検討した(図6)⁶⁾. CuPd₃, CuPd, Cu₃Pd ナノ 合金上での生成物分布をみると、Cuの割合ととも に C2 化合物生成の FE が増加することがわかった. ただし、相分離型 CuPd ナノ合金は、Cu ナノ粒子 および Cu₃Pd ナノ合金よりも高い C2 生成の FE を 示す.以上の結果から、次のようなメカニズムを提 案した.ナノ合金上では、Cu の濃度が高いほど、 C2 化合物生成の FE が増加することから、Cu 原子 上に吸着された CO 中間体の二量化が起こるために

-Cu3Pd -CuPd (Disordered) -CuPd3 -Pd

6 不規則型構造をとる Cu₃Pd, CuPd および CuPd₃ ナノ 合金と Cu および Pd ナノ粒子触媒上での各生成物に 対するファラデー効率

- Cu

は、一定以上のサイズをもつ Cu のドメインの形成 が必要である.また、CO 中間体は、Pd 原子に部 分的に吸着された酸素原子と CHO 中間体を形成す ることが報告されている.したがって、Cu 原子上 に吸着された CO 中間体は CHO 中間体との結合を 通して、スムーズに二量化して COCOH を形成す ると考えられる.これらの結果は、ナノ触媒での高 い生成物選択性を発現するには、活性部位の配置を 精密な制御が必要であることを意味している.

7. CO₂-eRR 利用に関する将来展望

金属ナノ粒子触媒上の CO₂eRR を通して, CO₂ から様々な化合物が生成されるようになってきた. 日本においては,再生可能エネルギーから製造され る電力(再エネ電力)の価格が他国と比較して高い ため, CO₂eRR によって作られる化成品がすぐに市 場に出回ることは考えにくい.他方, 2¢/kW 程度 の安価な電力を使うことができれば, CO₂を原料と して製造される CO, ギ酸,エチレン,メタノール, エタノールなどの化学製品(CH₄以外)は,現状の 市場価格と同程度あるいはそれより安くなると試算 されている¹⁰⁾.したがって,今後,電力価格が現 状の 1/10 程度になれば, CO₂ から製造される化学 製品が実用的に利用される可能性がある.

以上のようなことが実現されるためには、CO₂ eRRの原料となるCO₂の価格が数十ドル/トン程 度になる必要がある.CO₂価格は、CO₂源と回収技 術および回収する場所などによって1\$/tから900 \$/tと大きく変化する.現在、アミンやアルカリの 溶液を吸収媒体とする溶液吸収によるCO₂回収を 行う大規模設備が建設され、試験的に運用されてい る.他方、日本のように人口密度の高い地域では、 大規模設備を設置するよりも、利用する場所で、利 用するだけのCO₂を回収し、欲しいものに変換する、 オンサイト方式で利用できるコンパクトな設備を用 いることの利便性が高い.

最近、I²CNERのPIである藤川茂紀教授は、ナ ノレベルに制御された超薄膜を使って大気中の希薄 な濃縮する分離膜を使ったCO₂回収法(membranedirect air capture, m-DAC)の開発に成功した¹¹⁾. m-DACの効率がさらに改善されれば、家庭で排出 されるCO₂をエアコンの室外機程度の大きさの設 備を使って回収できるようになると考えられる。現 在、藤川教授と著者は、内閣府が実施しているムー ンショット型研究開発事業の支援を受けて、 m-DAC 装置にCO₂eRRの反応セルを連結した、

図7 m-DAC-U 装置の特徴

m-DAC-U 装置の開発を進めている(図7). m-DAC-U 装置を使えば、大気中の CO_2 から再生可能な電力と水を使った化学原料のオンサイトでの製造が可能になる。このような技術を含め、現在開発されている様々な CO_2 利用技術技術の発展により、近い将来、これまで厄介者であった大気中の CO_2 がグリーンな炭素資源として利用できるようになることを期待する。

参考文献

- Hori, Y., Wakebe, H., Tsukamoto, T. & Koga, O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. *Electrochim-Acta* 39, 1833-1839 (1994).
- Peterson, A. A. & Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. *The J. Phys. Chem. Lett.* **3**, 251-258 (2012).
- Hori, Y., Takahashi, I., Koga, O. & Hoshi, N. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. *J. Mol. Catal. A: Chem.* 199, 39-47 (2003).
- Reske, R., Mistry, H., Behafarid, F., Roldan Cuenya, B. & Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. *J. Am. Chem. Soc*, **136**, 6978-6986 (2014).
- Ma, S. *et al.* One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. *J. Power Source* **301**, 219-228 (2016).
- Ma, S. *et al.* Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. *J. Am. Chem. Soc.* 139, 47-50 (2017).
- 7) Yamauchi, M., Abe, R., Tsukuda, T., Kato, K. &

Takata, M. Highly selective ammonia synthesis from nitrate with photocatalytically generated hydrogen on CuPd/TiO2. *J. Am. Chem. Soc.* **133**, 1150-1152 (2011).

- Yamauchi, M. & Tsukuda, T. Production of an ordered (B2) CuPd nanoalloy by lowtemperature annealing under hydrogen atmosphere. *Dalton Trans.* 40, 4842-4845 (2011).
- Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. *Nat. chem.* 1, 37-46 (2009).
- Bushuyev, O. S. *et al.* What should we make with CO2 and how can we make it? *Joule* 2, 825-832 (2018).
- Fujikawa, S., Selyanchyn, R. & Kunitake, T. A new strategy for membrane-based direct air capture. *Polym. J.* 53, 111-119 (2021).

著者略歴

山内 美穂(やまうち みほ) カーボンニュートラル・エネルギー国 際研究所 教授 専門分野:固体物性化学,ナノ科学,

2001年筑波大学大学院博士課程化学研究科化学 専攻を修了後、九州大学院理学研究院・助教、北海 道大学触媒化学研究センター・准教授などを経て、 2012年九州大学カーボンニュートラル・エネル ギー国際研究所・准教授に着任し、2017年から現 職に就任した。

専門は固体化学,ナノ科学,触媒化学で,最近は, 電気化学反応を使った CO₂ 還元についても研究を 行っている.