研究論文

Study on Evaluation Method of Shunt Resistance Reduction of Photovoltaic Cell Using Thermal Images

熱画像を利用した PV セルの R_{sh}低下判定方法に関する研究

Hiroki SATO 佐藤 弘輝^{*1‡} Yasuhiro AOYAMA 青山 泰宏^{*3}

Yuki NISHIDO 西戸 雄輝^{*3} Sanshiro YAMANAKA 山中 三四郎^{*2} Hiroshi KOBAYASHI 小林 浩^{*3}

Abstract

In recent years, photovoltaics system (PVS) have been widely used, but the change in characteristics with long-term operation is still not sufficiently clarified yet. We would like to clarify the relationship between the long-term operation and the shunt resistance (R_{sh}) reduction of cell, which is one of causes of hot spots. In order to clarify these relationships, a method for efficiently evaluation of R_{sh} reduction is necessary. In this paper, we propose a new method to evaluate R_{sh} reduction using thermal images. We examined a method to evaluate R_{sh} reduction efficiently on a string scale by the difference in the heat generation temperature of the shaded cells. As a result, it became clear that the R_{sh} reduction of cell can be roughly evaluated by the proposed method.

Keywords: Photovoltaic cell, Shunt resistance (*R*sh), Thermal image, Heat generation, Shade, Long-term operation キーワード: PV セル, シャント抵抗(*R*sh), 熱画像, 発熱, 遮光, 長期運用

1. はじめに

近年、太陽光発電システム(以下, PVS)の普及が進むにつれて、長期に渡り運用し続けられる信頼性が求められるようになってきた^(1, 2).この長期信頼性を阻害する要因として、紫外光によるバックシート・封止材の着色⁽³⁾, PV モジュール(以下,モジュール)における剥離劣化⁽⁴⁾, EVAの加水分解に起因する直列抵抗の増加⁽⁶⁾が報告されている.また, PV セル(以下,

- *1 名城大学大学院 理工学研究科 大学院生 (〒468-8502 名古屋市天白区塩釜口1-501)
 * E-mail: 173427012@cccalumni.meijo-u.ac.jp
 *2 名城大学理工学部 教授
- *3 株式会社トーエネック (原稿受付:2018年8月2日,受理日:2018年10月9日)

セル)のシャント抵抗(以下, R_{sh})が低下する可能性⁶⁰も報告 されている.しかしながら, R_{sh}の経年変化については十分に 検討されていない. R_{sh}は,セルの局所的な欠陥によって生じ る漏れ電流を表す指標である.このR_{sh}が極端に低下した場合, バイパスダイオード(以下, BPD)が正常に機能していてもホ ットスポット^のを引き起こす可能性が考えられる.また, R_{sh}の 低下はセルの出力低下にも影響を及ぼす⁶⁰.したがって,長 期に渡る太陽電池の屋外運用と R_{sh}低下の関係について明ら かにすることは, PVS の長期信頼性を確保する上で極めて重 要である.

非破壊で Rsh を評価する方法として、セル1枚を遮光した際 のモジュールの I-V 特性を利用する方法がある^の. 筆者らはこ れまでに、この I-V 特性を利用する方法で長期運用中のモジ ュールを調査し、Rsh の低下したセルが複数存在することを確 認している⁽¹⁰⁾. しかし、モジュール設置当初にセルごとの初 期特性を測定していなかったため、純粋な経年による低下と は断言できていない.

筆者らは、Rsh の経年変化について明らかにするために、実 際に長期に渡り屋外運用される複数のアレイについて、セル のR_{sh}を初期状態から継続的に調査したいと考えている. その ためには、非破壊で簡便な Rsh の評価方法が必要である. 従来 の I-V 特性を利用する評価方法は、モジュール単位で測定器 の配線を接続し直す必要があり,運用中のアレイについて調 査するためには手間がかかる. そこで、本研究では Rshの経年 変化を調査するための方法として、新たに「熱画像によるセ ルの Rsh低下判定方法」を提案する.本手法は、接続箱でスト リングを短絡させればよいため、I-V 特性を利用する従来の方 法に比べて効率よく調査できる. ただし、本手法は Rshを数値 として定量的に評価するのではなく、 セルを意図的に発熱さ せた際の温度から Rsh が低下したセルを判別する手法である. 筆者らは、本手法で複数のアレイについてRshが低下したセル の分布を継続的に調べることにより、長期運用とRshの関係を 明らかにできると考えている.

本論文では、R_{sh}の経年変化を調査するために、熱画像から R_{sh}が低下したセルを判定する方法を新たに提案し、その有効 性を検証する.さらに、提案手法を用いて実際に長期運用ア レイ内すべてのセルのR_{sh}を調査した結果について報告する.

2. セルの部分的な遮光と発熱

本論文で提案する「熱画像によるセルの R_{sh}低下判定方法」 とは、セルの一部分を遮光してストリング(もしくはモジュ ール)を短絡させることで対象となるセルを意図的に発熱さ せて、赤外線カメラを用いて観測した発熱温度から R_{sh}の低下 を判定する方法である.この判定方法について検討する前に、 まずはセル 1 枚の発熱現象について把握する必要がある.本 章では、対象となるセルの一部分をゴムシートを用いて完全 に遮光してモジュールを短絡させた場合に、そのセルの非遮 光部分が均一に発熱する現象について考える.

2.1. セルの発熱原理

JIS C 8990⁽¹¹⁾にあるように、セルの一部分を遮光してモジ ュールを短絡させると、遮光したセルの非遮光部分が発熱す る. Fig.1 に、モジュール(1クラスタにセル18枚、2クラスタ 構成)内のセル1枚の一部分をゴムシートを用いて完全に遮 光して、短絡させた状態を示す.ここで、「クラスタ」とは、セ ル群とそれに並列接続された BPD から成る回路のことであ る.例えば、Fig.1の下部クラスタのように、セルを遮光してい ない場合には、セル群を通して短絡電流(*Isc*)が流れる⁽¹²⁾.と ころが、セル1枚を部分的に遮光すると、遮光セルを含むク ラスタ内のセル群には、遮光セルによる制限を受けて*Isc*より も低下した電流(*Iop*)が流れる.このとき、*Isc*(実際には、Fig.1 の下部クラスタに0.6 V程度の電圧がかかるが、クラスタの開 放電圧約10Vに比べて十分に小さいため、流れる電流を*Isc* として考える)と*Iop*の差分の電流は、遮光セルを含むクラス タ内の BPD へ流入する. BPD が導通状態となるため、遮光セ ルを含むクラスタは、ほぼ短絡した状態と見なせる(実際に は、BPD に-0.6 V 程度の電圧がかかる). これは、同クラスタ 内の 17 枚の非遮光セルの順バイアス電圧とほぼ同じ大きさ の逆バイアス電圧が、遮光セル1枚にかかることを意味する. Fig.2 に、モジュール内のセル1枚をわずかに遮光した場合に おける, 遮光セル1枚のI-V特性①, 遮光セルと同じクラスタ 内の17枚の非遮光セルの合成I-V特性②を示す.Fig.2では, Rsh が十分に大きい正常なセルを遮光した場合について考えてい る. Fig.2 より、短絡モジュール内の遮光セル1枚の動作点は、 遮光セルと同じクラスタ内の17枚の非遮光セルの合成I-V特 性②について、電流軸を線対象に鏡像をとったカーブと、遮 光セル1枚のカーブ①との交点として考えることができる. ここで、遮光セル1枚の動作点は電力の消費を意味するI-V特 性の第2象限に位置し、Fig.2の破線で囲まれた面積(A+B) に相当する電力を消費する. この消費電力の内, 遮光セルの 短絡電流 Isc'と逆バイアス電圧の積にあたる面積(A)は、セ ル平面の均一な発熱に消費される電力である.例として、 Fig.3 にセル平面が均一に発熱した状態の熱画像を示す. Fig.3 は、セルの一部分をゴムシートで遮光し、モジュールを短絡 させて撮影した熱画像である.一方,遮光セルを含むクラス タの動作電流 Lop と遮光セルの短絡電流 Lsc'の差分の電流と、 逆バイアス電圧の積にあたる面積(B)は、遮光セル内のR_{sh}

Fig.1Short circuited module with a single shaded cell.図1短絡モジュール内のセル1枚を遮光した状態

を介した局所的な発熱すなわち,ホットスポットとして消費 される電力である.ただし,土井氏らの報告⁽¹³⁾にある逆バイ アス特性から推察すると,セルの欠陥部分に流れ込む電流が 約2Aよりも十分に小さく,この面積(B)が小さい場合には, 短時間でホットスポットによる損傷には至らないと考えられ る.本論文の提案手法では,ホットスポットではなく,セル 平面の均一な発熱を利用して Ratが低下したセルを判定する.

2.2. 遮光セルの Rsh と発熱の関係

前節では、R_{sh}が十分に大きい正常なセルを例に、セルの一 部分を完全に遮光してモジュールを短絡させた場合における 遮光セルの発熱原理について示した.本節では、遮光セルの R_{sh}の大きさと発熱の関係について考える.

Fig.4 に, Fig.2 と同様にセル1枚をわずかに遮光した状態の I-V 特性を示す.ここで, Fig.4 ①は,遮光セルの Rahが十分に 大きい場合と,低下した場合の I-V 特性を同一図面上に示し ている.遮光セルの Rahが低下しているほど(第2象限にある Fig.4 ①の I-V 特性の傾きが急になるほど),遮光セルの動作 点は Isc 近傍へと移動する.仮に,セル個々のもともとの短絡 電流にばらつきがなく一定とすると,遮光セルのRahの大きさ に応じて,遮光セルにかかる逆バイアス電圧が変化するため, セル平面の均一な発熱に寄与する消費電力に差が生じる

(Fig.4 の a と b の差). すなわち, R_{sh}が低下すれば発熱温度 も低下する. したがって, Fig.4 に示すように, 同一の割合でセ ルをわずかに遮光すれば, 遮光セルの発熱温度から R_{sh}が低下 したセルを判定することができる. ただし, これは BPD が正 常に動作することが前提である.

2.3. 適切なセル1枚の遮光面積

実際に、遮光セルの発熱温度から R_{sh} が低下したセルを判定 するためには、適切なセルの遮光面積を決定する必要がある。 適切なセルの遮光面積とは、 R_{sh} が十分に大きいセルと小さい セルの発熱温度の差が最大となるときの遮光面積と考える。 そこで、本節では R_{sh} が十分に大きいセル (R_{sh} : 61.7 Ω) と R_{sh} が小さいセル (R_{sh} : 8.0 Ω) を対象に、それぞれセルの面 積に対するゴムシートの遮光面積を変化させた場合の対象セ ルの発熱温度について検討する。ただし、 R_{sh} が小さいセルで

は、過度に遮光面積を大きくすると、ホットスポットを誘発 する恐れがあるため、モジュール短絡直後から発熱温度が上 昇していく経過を赤外線カメラで観察し続けて、安全に注意 して実験を行った.

Fig.5 に、セルの遮光面積と発熱温度の関係を示す.ここで、 遮光セルの発熱温度は、測定環境の変化による影響を軽減す るために、非遮光セルに対する遮光セルの「温度増加」で評 価しており、Fig.5 の温度増加はモジュール裏面から赤外線カ メラを用いて撮影した熱画像より算出している. Fig.5 を見る と、セル面積に対してゴムシートを 10%~20%の大きさで貼 り付けた場合に、R_{th}の違いによる温度増加の差が顕著に表れ ている(30 ℃弱).これは、Fig.4 に示すように、セルをわず かに遮光した場合に、遮光セルのR_{th}の大きさに応じてかかる 逆バイアス電圧に差が生じることを表している.したがって、 熱画像からR_{th}が低下したセルを判定する際の遮光面積は、よ り短絡電流の低下量が小さい 10%が適切であると考える.

Fig.4 R_{sh} of single shaded cell and power consumption. 図4 遮光セルの R_{sh} と消費する電力

図5 遮光面積と温度増加の関係 (R_{sh}: 61.7 Ωと8.0 Ω)

3. 複数モジュールでの判定

前章では、熱画像によるセルのR_{sh}低下判定方法の基礎となる発熱原理を示し、実際に判定を行うためのセルの遮光面積を決定した.本章では、複数のモジュールを検討対象として、 判定方法の有効性を検証する.

Table 1 に、検討対象のモジュール 4 種類(長期運用品: A ~C,新品: D)の仕様を示す.ここで、長期運用モジュール A ~C はすべて多結晶シリコンモジュールであり、前章で例に挙げた Fig.1 のモジュールと同じ構成である(1クラスタにセル18枚,2クラスタ構成).また、新品モジュール D は単結晶シリコンモジュールであり、セル10枚を1クラスタとする計2クラスタから構成される.これらのモジュール内のセルを1枚ずつ順番にゴムシートで10%だけ遮光していき、その都度モジュールを短絡させて熱画像を撮影した.さらに、従来のI-V特性を利用する方法により、モジュール内すべてのセルについて、セル個々の Rah 値を算出した.熱画像から得た温度増加と I-V 特性から得た Rah 値の関係について検討する.

Fig.6 に、検討対象モジュール4種類それぞれにおけるセル 個々の R_{sh} 値と温度増加の関係を示す.Fig.6 より、長期運用モ ジュールA~C内には、 R_{sh} が20 Ωよりも低いセルが複数存在 し、 R_{sh} が低いほど温度増加も低下する傾向が確認できる. 一 方、新品モジュール D内には、そもそも R_{sh} が 20 Ω未満のセ ルが存在していない.そのため、温度増加が極端に低い (10 ℃未満の)セルは見られず、いずれのセルも温度増加は ほぼ一定(30 ℃程度)となっている.

以上より,検討対象とした4種類のモジュールで, R_{sh} が20 Ω 未満のセルがモジュール内にあれば、そのセルの温度増加 が低下することを実験的に確認できた.したがって,前章に 示した通りモジュール単位であれば熱画像を用いて R_{sh} が低 下したセルを判定することができる.

4. ストリング単位での判定

前章では、複数のモジュールを検討対象として、モジュー ル単位であれば、熱画像によるセルのR_{sh}低下判定が可能であ ることを示した.しかし、実際に運用するアレイ規模でセル のR_{ah}低下判定を行う場合,前章の方法ではモジュール単位で 短絡させる必要があるため手間がかかる.そこで,より効率 よくR_{ab}が低下したセルを判定するために,本章では前章の方 法を応用し,接続箱にてストリング単位で短絡させて複数の セルのR_{ab}低下を同時に判定する方法を検討する.

4.1. 判定方法

Fig.7 に, 各モジュールのセル1枚をゴムシートで10%遮光 して、ストリングを短絡させた状態を示す.Fig.7は、本章で検 討対象とする多結晶シリコンモジュール (1 クラスタにセル 18枚、2クラスタ構成) 12枚から構成される1ストリングを 模式的に表している.2章の発熱原理より、ストリング内の各 モジュールの BPD が正常であれば、Fig.7 に示すようにモジュ ールごとにセル1枚を遮光すると、各遮光セルを含むクラス タ内の BPD が導通する、ストリング単位で短絡させた場合、 各遮光セルには同クラスタ内の非遮光セル群の順バイアス電 圧とほぼ同じ大きさの逆バイアス電圧がかかる.これは、接 続箱にてストリング単位で短絡させても、遮光したセルのRsh の大きさに応じて、発熱温度が違うことを意味する. したが って、ストリング単位で短絡させた場合でも、前章と同様に 熱画像からRahが低下したセルを判定できる. この方法であれ ば、モジュール単位で短絡しなくとも、接続箱にてストリン グ単位で短絡させればよいため、労力を削減できる. さらに、 同時に複数のセルのRsh低下を判定することができるため、同

Fig.6 Relation of $R_{\rm sh}$ and temperature increase of all cells in modules.

	モジュール	稼働期間	$I_{\rm SC}$ [A]	$V_{\rm OC}$ [V]	セルの面積 [cm ²]	1クラスタの セル枚数	クラスタ構成
Old	А	約 15 年	3.73	21.5	7.8 imes 15.7	18	2クラスタ
	В	約 20 年	4.00	21.5	11.5 imes 11.5		
	С	約 10 年	4.87	20.4	12.5×12.5		
New	D	1 年未満	9.79	13.1	15.6×15.6	10	

Table 1 Specification of target modules (*I*_{SC} and *V*_{OC} are nominal value). 表 1 検討対象モジュールの仕様 (*I*_{SC}, *V*_{OC}は公称値)

時に複数のストリングを短絡させることで、従来の I-V 特性 を利用する方法よりも効率よくアレイ内すべてのセルを調査 することができる.ただし、日射強度の低下に伴い遮光セル の発熱温度も低下するため、R_{sh}が低下したセルを判別するこ とが難しくなる.したがって、本手法で判定を行う場合は日 射強度が十分に高く安定していることが望ましい.

4.2. 判定方法の検証

本節では、20年弱運用している PVS の1ストリング内すべてのセルを検討対象として、前節で提案したストリング単位での判定方法の有効性を検証する.

検討対象のストリング内には、計432枚(12モジュール× 36セル)のセルがある.Fig.7に示すように、各モジュールの セル1枚をゴムシートで10%遮光し、ストリングを短絡させ て熱画像を撮影することで、1回の測定からストリング内のモ ジュール数分すなわち、12枚の遮光セルの発熱温度を同時に 得られる.この方法を用いて、遮光するセルを順番に変更し ていき、その都度熱画像を撮影することで、計36回の測定か らストリング内すべてのセルの温度増加を得た.さらに確認 のため、従来のI-V特性を利用する方法を用いて、セルを1枚 ずつ順番に遮光した際のモジュールのI-V特性を計432回測 定し、ストリング内すべてのセルのR₄値を算出した.

例として,撮影した熱画像の一部をFig.8 (a),(b)に示す.ここで,太線で囲われたセルは遮光セルである.Fig.8 (a)より, ① 54.3 ℃の遮光セルは,基準とする非遮光セルの温度 ② 49.1 ℃に対して温度増加5.2 ℃と発熱温度が低いセルである ことがわかる.ここで,その他の遮光セルはいずれも温度増 加14 ℃以上である.また,Fig.8 (b)より,① 50.9 ℃の遮光セ ルは,非遮光セルの温度 ② 46.6 ℃に対して温度増加 4.3 ℃ と発熱温度が低く,その他の遮光セルはいずれも温度増加 21 ℃以上である.これらのセルについて,従来法⁹より R_a値

Fig.7Short circuited string with a single shaded cell per module.図7モジュールごとにセル1枚を遮光した短絡ストリング

を算出したところ、(a)の①は7.2 Ω 、(b)の①は6.1 Ω と R_{sh} が 極端に低いセルであった.ここで、遮光セル以外にも発熱し ているセルがあるが、これらのセルはもともとの短絡電流が 他よりもわずかに低下したセルと考えられる.

Fig.9に、1ストリング内すべてのセルについて、熱画像から 算出した温度増加と、I-V 特性から算出した R_{sh}値の関係を示 す.Fig.9は、日射強度0.7 kW/m²以上の条件下で、測定時の天 候の都合から5日に分けて測定した結果である.Fig.9より、温 度増加にばらつきが見られるが、R_{sh} 20 Ω以下の範囲では遮 光セルの R_{sh} が低いほど温度増加も低下する傾向が明瞭に確 認できる.ここで、温度増加のばらつきは、5 日に分けて測定 したことに起因する日射強度・風速^(14, 15)等の測定環境の変化 による影響と考えられる.Fig.9 に示した温度増加のばらつき より、ストリング単位でR_{sh}が低下したセルを判定する場合に は、熱画像から算出する温度増加から厳密なR_{sh}値を求めるこ とは困難である.筆者らの目的は、実際に運用する複数のア レイを継続的に調査していき、屋外での長期運用とR_{sh}低下の 関係を明らかにすることである.したがって、R_{sh} 値を正確に 算出できなくとも、R_{sh}が低下したセルを判定できればよい.

(a) date : 2017/08/03

(b) date:2017/08/09 Fig.8 Thermal image in evaluation. 図 8 判定時の熱画像

ここで、 R_{sh} が 10 Ω 未満のセルを「 R_{sh} が低下したセル」と考 える.ストリング単位での R_{sh} 低下判定方法の有効性を検証す るために、Fig.9 の R_{sh} 値を4つ (R_{sh} <10, 10 $\leq R_{sh}$ <20, 20 $\leq R_{sh}$ <30, 30 $\leq R_{sh}$)に、温度増加 T_{cell} を10 °C間隔で4つ (T_{cell} <10, 10 $\leq T_{cell}$ <20, 20 $\leq T_{cell}$ <30, 30 $\leq T_{cell}$)に大別して、各温度増加 帯における R_{sh} 別のセル枚数を検討する. Fig.10 に、各温度増 加帯に分類した R_{sh} 別のセル枚数を示す. Fig.10 より、全セル 432 枚中 28 枚が温度増加 10 °C未満のセルであり、その内 20 枚 (71%程度)が R_{sh} 10 Ω 未満にまで低下したセルであった. 一方、温度増加 20 °C以上のセルは288 枚あり、その内 221 枚 (77%程度)が R_{sh} 30 Ω 以上のセルであった.

以上より,ストリング内のモジュールごとにセル1枚を遮 光し,ストリングを短絡させて熱画像を撮影することで,複 数のセルのRat低下をおおむね判定することができる.

5. 長期運用アレイの調査結果

前章では、4ストリングで構成されるアレイ内の1ストリン グ(モジュール12枚から構成、1モジュール内にセル36枚) を対象に、熱画像によるRsh低下判定方法の有効性を検証した. 本章では、提案手法を用いて、前章で対象としたストリング

Fig.9 Relation of R_{sh} and temperature increase of all cells in single string.

図9 1ストリング内の全セルのRsh値と温度増加の関係

を含む4ストリングを対象に、Ratが低下したセルの枚数を調 査した結果について報告する.ここで、対象アレイは20年弱 PVSの一部として屋外運用されており、アレイ内のセル数は 1728枚である.

Table 2 に、 遮光セルの 温度 増加 Tcell を 10 ℃間隔で4つ(Tcell <10, 10≦Tcell<20, 20≦Tcell<30, 30≦Tcell) に大別した各温度 増加帯におけるセル枚数を示す. ただし, String 1~String 4の 4 つのストリングの内, String 2 は前章で検討対象としたスト リングである. Table 2 より, 同一アレイ内のストリングであ るにも関わらず、ストリングごとに温度増加 10 ℃未満のセ ル枚数すなわち、Rsh が低下していると判定したセル枚数に差 異があることがわかる.また、今回対象とした長期運用アレ イでは、すべてのセル 1728 枚の内 306 枚(約 17.7%)が温度 増加10 ℃未満であり、Rshが低下したセルと判定した.例とし て、温度増加が 20 ℃程度と十分に高く非遮光セルに比べて 明らかな発熱が観測できたセル(Cell A)と,温度増加が10 ℃ 未満の Rsh が低下していると判定したセル (Cell B, Cell C)の 計3枚を抜粋し、それぞれを1枚ずつ50%遮光した際のモジ ュールの I-V 特性を測定した. ここで, Cell A は String 2, Cell B はString 4, Cell CはString 1内のセルである. Fig.11 に得られた I-V 特性を示す. 温度増加が 20 ℃程度の Cell A は, Rsh が十分 に大きいため、セルを 50% 遮光すればモジュールの I-V カー ブに目視でもわかるような段差が表れる.一方,温度増加 10 ℃未満の Rsh が低下していると判定した Cell B と Cell C で は、セルを 50% 遮光しているにも関わらず、I-V カーブに Cell Aのような段差は見られない.したがって, Cell Bと Cell Cは Rshが低下したセルであることが確認できる(10).

本章では、熱画像を利用したストリング単位でのR_{sh}低下判 定方法を用いて、長期運用 PVS 内のアレイを対象に、R_{sh}が低 下したセルの枚数を調査した。その結果、アレイ内すべての セル 1728 枚の内 306 枚(約17.7%)をR_{sh}が低下したセルと 判定した。ただし、全セルのR_{sh}の初期状態が不明であるため、 純粋な経年による低下とは断言できない。

以上より,ストリング単位で複数のセルのR_{sh}低下を同時に 判定する方法を用いれば、アレイ規模でR_{sh}が低下したセルを 調査できる.今回対象としたアレイを例に、従来のI-V特性を 利用する方法でR_{sh}が低下したセルを調査する場合,I-V特性

Table 2	Number of cells in each temperature increase zones in
	the target array.

表2 対象アレイにおける各温度増加帯のセル枚数

$T_{\rm cell} [^{\rm o}{\rm C}]$	String 1	String 2	String 3	String 4	Array
$T_{\rm cell} < 10$	81	28	114	83	306
$10 \leq T_{\text{cell}} < 20$	128	116	107	131	482
$20 \leq T_{\text{cell}} < 30$	127	207	102	104	540
$30 \leq T_{\text{cell}}$	96	81	109	114	400

Fig.11 I-V characteristics of module
with a 50% shaded single cell.
図 11 セル1枚を 50%遮光した際のモジュールの I-V 特性

を得るためにモジュール数分の48回測定器を接続し直さなければならない.また、セル総数にあたる1728回順番にセル遮光時のI-V特性を測定する必要がある.一方、熱画像を利用してストリング単位でRshが低下したセルを判定する場合には、熱画像1回の撮影で1ストリング分のモジュール数にあたる12枚のセルを同時に判定することができるため、計144回(4ストリング×36セル)熱画像を撮影すればアレイ内すべてのセルを調査することができる.また、接続変更の手間に関しても、接続箱でストリングごとに回路を短絡させればよいため、労力を削減できる.

6. まとめ

本論文では、長期に渡り屋外運用される複数のアレイについて、Rsh が低下したセルの分布を継続的に調査可能な方法として、熱画像によるセルのRsh 低下判定方法を新たに提案し、その有効性を検証した.さらに、実際に提案手法を用いて、長期運用したアレイ内すべてのセルのRshを調査した.以下に得られた結果をまとめる.

(1) セル 1 枚の一部分をゴムシートで完全に遮光してモジュ ールを短絡させると, 遮光したセルの非遮光部分が均一に発 熱する. このとき, R_{sh}が十分に大きいセルに比べて, R_{sh}が低下 したセルでは発熱温度が低くなる.

(2) セル1 枚の面積 10%をゴムシートで遮光してモジュール を短絡させると、遮光セルの R_{sh} が 20 Ω 未満の場合には、 R_{sh} が低いほど温度増加(遮光セルと非遮光セルの発熱温度の差) も低下する.

(3) モジュールごとにセル1枚をゴムシートで10%遮光し, 接 続箱にてストリング単位で短絡させて熱画像を撮影した場合, 遮光セルの温度増加が10 ℃未満であれば, R_{sh}が10 Ω未満に まで低下したセルと判定できる.したがって, 1 モジュール内 のセル枚数と同じ回数だけ熱画像を撮影すれば, 1 ストリング 内すべてのセルの R_{sh}の低下判定が可能である. (4)本論文で提案する手法を用いて、4 ストリングで構成される長期運用アレイを対象に、熱画像を利用して*R*_{sh}の低下判定を行ったところ、アレイ内のセル総数 1728 枚中 306 枚(約17.7%)のセルが温度増加 10 ℃未満であるため、これらのセルは*R*_{sh}が低下していると推定できる.

7. 参考文献

 K. Hara, A. Masuda, Improving the long-term durability of photovoltaic modules based on degradation mechanisms, JSAP, 84 (7), 648-649 (2015).

2) A. Masuda, N. Igawa, Consortium style study on the development of highly reliable photovoltaic modules and acceleration test methods - Management of the "Consortium Study on Fabrication and Characterization of Solar Cell Modules with Long Life and High Reliability" -, Synthesiology, **9** (1), 39-40 (2016).

 Y. Tachibana, T. Toyoda, K. Shimada, K. Nakano, Evaluation of Age-related Degradation of Solar Power Systems - Aiming for a Long-life Solar Cell Module -, Report of the Industrial Research Institute of Ishikawa, 63, 9-10 (2012).

4) N. Uchiyama, A. Masuda, K. Mitsuhashi, A. Tsutsumida, J. Watanabe, J. Shirataki, K. Matsuda, Study on delamination in photovoltaic modules induced by acceleration test and field exposure, The 61st JSAP Spring Meeting, 76 (2014), Kanagawa.

5) K. Hara, A. Masuda, Improving the long-term durability of photovoltaic modules based on degradation mechanisms, JSAP, **84** (7), 649-651 (2015).

6) 土井卓也,新規信頼性試験法の開発,第Ⅱ期高信頼性太陽電池モジ ュール開発・評価コンソーシアム最終成果報告書,221-223 (2013).

7) IEC 61215-2, INTERNATIONAL STANDARD, Edition 1.0, 16-17 (2016).

 T. Matsui, S. Yamanaka, H. Ohno, Shunt resistance and output of PV cell, The 2012 Annual meeting of the institute of electrical engineers of japan, 57 (2012).

9) S. Yamanaka, T. Mishina, H. Kawamura, H. Kawamura, H. Ohno, K. Naito, Effect of the Reverse Bias Characteristics of a PV Cells on I-V Characteristics of PV Module with a Cell Lowered the Generating Power, JSES, 29 (2), 44-52 (2003).

10) K. Hada, H. Sato, S. Yamanaka, Comparison of New and Old Modules Using I-V Characteristics of a Module with a Shaded PV cell, The 2017 Annual meeting of the institute of electrical engineers of japan, 19 (2017).

11) JIS C 8990, ホットスポット耐久試験.

12) 太陽光発電協会,太陽光発電システムの設計と施工 改訂 4 版,15-17 (2012),オーム社,東京.

 T. Doi, T. Yamada, K. Sakuta, Forward current pyretic test and reverse biased breakdown test of c-Si PV cells, JSES/JSWS Joint Conference, 445-447 (2007).

14) 吉田駿, 伝熱学の基礎, 51-72 (1999), 理工学社, 東京.

15) M. Yukawa, M. Asaoka, K. Takahara, T. Ohshiro, K. Kurokawa, Estimation of Photovoltaic Module Temperature Rise, IEEJ Transactions on Power and Energy, **116** (9), 1102-1109 (1996).