研究論文

気象モデルによる日射予測 その1:予測システムの概要と精度検証

Solar irradiance forecasting using a mesoscale meteorological model

Part I: Forecasting system and the accuracy

嶋田 進 *1	劉 媛媛 ^{*2}	吉野 純 ^{*3}
Susumu SHIMADA	YuanYuan LIU	Jun YOSHINO
小林 智尚 ^{*4}	和澤 良彦 *5	
Tomonao KOBAYASHI	Yoshihiko WAZAWA	

Abstract

The authors have developed a solar irradiance forecasting system using the WRF (Weather Research and Forecasting) model, which is a fully compressible, non-hydrostatic mesoscale meteorological model developed by NCAR and NCEP. Solar irradiance forecasting with a 2 km grid resolution for two days ahead in the year 2011 is performed and the accuracy of the simulated GHI (Global Horizontal Irradiance) is quantitatively examined using observations taken from 61 sites in Japan. The WRF-simulated GHI for one day and two days ahead is found to have annual biases of 75.4 and 75.9 W/m² (of the 61 sites average) and RMSEs (Root Mean Square Errors) of 189.2 and 199.7 W/m². As well as the accuracy of the simulated GHI at the single sites, the effect of spatial smoothing to reduce the error in WRF is also investigated. It is found that an annual RMSE of 30 % at a single site is improved by averaging spatially the simulated GHI within a 100 km radius.

キーワード:日射予測,メソ気象モデル,WRF,空間平滑化 Key words: Solar irradiance forecasting, Mesoscale meteorological model, WRF, Spatial smoothing effect

1. はじめに

欧州では再生可能エネルギーの急速な拡大が続いている. 例えば、太陽光発電の導入が盛んなドイツ・バイエルン地 方では、快晴時における太陽光による総出力は電力システ ム全体の1割に達している.その系統に与える影響は既に 無視できない状況にあるため、気象予報に基づく太陽光発 電量の予測に関する研究が積極的に行われている¹⁾.我が 国においても、現状では太陽光発電の導入量が少ないため 系統への影響は軽微であるものの、将来系統へ大量に連系 された場合にその影響を如何に緩和するかが重要な課題で あると認識されつつある.そのため、欧州各国での動向と 同様に、日射予測に基づく太陽光発電の出力予測に関する 研究が始まっている²⁾.

日射の予測手法としては、衛星リモートセンシングに基 づく方法³⁾および数値気象モデルを用いる方法^{4),5)}があ る.衛星リモートセンシングによる方法では、数シーンの 雲画像から雲の移動ベクトルを推定することで現在から数 時間先までの日射を面的に予測することが出来る.しかし この方法は、予測時間の進行に伴って精度が急激に低下し、 予測開始から2時間経過した時点で単純に観測値を時間方 向に外挿する方法と予測精度がほぼ等しくなることが報告 されている³⁾.他方,数値気象モデルでは計算機内に三次 元気象場を再現することでおおよそ一週間先までの予測が 技術的に可能で,系統運用の計画立案で有益な一日二日先 の予測にはこの数値気象モデルに基づく方法が有力視され ている¹⁾.

現在著者らは、米国大気科学研究センターおよび米国気 象局共同開発のメソ気象モデル WRF (Weather Research and Forecasting)⁶⁾を用いた当日および翌日日射量の予測シス テムを開発中である.本稿では、その予測システムの概要 および中部電力が管区内で実施している高密度な日射観測 ネットワークから得られた全天日射観測値を用いて WRF による日射予測精度を検証した結果について述べる.ここ では単一地点における予測精度のみではなく、空間平滑化 による精度の改善効果についても併せて議論する.

2. メソ気象モデル WRF による日射予測システム

メソ気象モデル WRF は,熱力学を含む数値流体力学モ デルに降水や大気放射等の気象現象に関するあらゆる物理 過程を組み込んだ非静力学・完全圧縮の領域気象モデルで ある.現業予報機関(日本なら気象庁)から配信される等 間隔の格子状に配列された気象パラメータ(風速,温度, 湿度,気圧)を回転座標における熱流体力学の方程式およ び各種物理過程の方程式の初期値および境界値として与え

^{*1} 岐阜大学工学研究科特任助教 (〒501-1193 岐阜市柳戸 1-1) e-mail: sshimada@gifu-u.ac.jp

^{*2} 岐阜大学工学研究科大学院生

^{*3} 岐阜大学工学研究科准教授

^{*4} 岐阜大学工学研究科教授

^{*5} 中部電力株式会社 技術開発本部 電力技術研究所 (原稿受付:2013年1月25日)

ることで、入力されたパラメータ以外に降水量や日射量な どの新たな変数を数 km 格子間隔で出力することができる.

WRFの計算領域を Fig. 1 に示す. 広域的な気象現象の影響を考慮するため日本全域を含む計算領域からスタートして、対象とする中部電力管内まで段階的に水平空間解像度を増加させる.水平解像度はそれぞれ 18,6 および 2 km 格子,鉛直層数は地表から 100 hPa まで 50 層である.予測 計算の実施期間は 2011 年 1 月から 12 月の 1 年間である. WRF ではユーザーは計算領域および期間の他に複数用意 された物理過程オプションの中からそれぞれ一つのスキー ムを選択可能である.ここで日射を計算するため短波放射 スキームには、雲微物理量や相対湿度の予報結果を元に大 気外日射の透過率を診断して地表面に到達する日射量を計 算する Dudhia スキーム⁷⁾を選択した.Table 1 はその他の 計算条件の一覧を示している.

Fig. 2はWRFによる日射予測システムの予測サイクルで ある.日本時間(世界標準時プラス9時間)の21:00JSTを サイクルの起点として,翌日1:50JSTまでに,(1)気象場の 初期値および境界値として使用する気象庁の全球モデル予 報結果(20×20km,3時間毎,12UTC初期値)⁸⁾,(2)陸面 モデルの入力値として与える米国環境予報センターのGFS

Fig. 1 Domains used in the simulation

Table 1 WRF configurations					
	Start: 00:00 UTC 1st JAN 2011				
Period	End: 24:00 UTC 31th DEC 2011				
	48-hour forecast				
Input data	JMA GSM (3-hourly, 20 km × 20 km)				
	NCEP GFS (3-hourly, $0.5^{\circ} \times 0.5^{\circ}$)				
	OSTIA (daily, $0.05^{\circ} \times 0.05^{\circ}$)				
Domain	Domain 1 (18km, 119 × 109 grids)				
	Domain 2 (6km, 129 × 129 grids)				
	Domain 3 (2km, 159 × 228 grids)				
Vertical layer	50 levels (suface to 100 hPa)				
	Dudhia short wave radiation				
	RRTM long wave radiation				
Physics options	WSM 6-class graupel scheme				
	Kain-Fritsch cumulus parameterization				
	(Domain 1 and 2 only)				
	Noah land surface model				
	MYJ PBL parameterization				
FDDA option	Disable				

Fig. 2 Solar irradiance forecasting cycle using the WRF model

(Global Forecasting System) 予報結果 $(0.5^{\circ} \times 0.5^{\circ}, 3 時間毎)$ ⁹⁾ および (3) 海面温度データとして与える OSTIA (Operational Sea Surface Temperature and Sea Ice Analysis) $(0.05^{\circ} \times 0.05^{\circ}, 1 日毎)^{10}$ をそれぞれダウンロードする.

次に各データを WRF の計算グリッドに水平および鉛直 内挿して初期値および境界値を作成した後,7:00JST まで の約5時間で48時間分の時間積分を行う.当日予測の予測 時間中(21:00JST)に次の予測サイクルをスタートさせる. これらの一連のプロセスは並列計算機上で自動実行され, 48時間分の時間積分の内,予測計算の時間発展よりも実際 の時間進行が速くなる21:00から7:00JST まで10時間分を 除いた38時間分の結果(1時間毎)が実際の予測値となる. つまり,日本時間午前7時にその日と翌日分の日射予測値 が利用できる.計算精度の検証には,7:00から24:00(10~ 27時間分)を当日の予測結果(Day1),翌1:00から計算終 了の21:00(28~48時間分)までを翌日の予測結果(Day2) とした.

3. 全天日射観測値

Fig. 3 は中部電力が実施している日射観測地点の位置を 示している (白丸). 中部電力では, 管区内の合計 61 地点 (愛知: 25 地点, 岐阜: 10 地点, 三重: 9 地点, 静岡: 6 地 点, 長野: 11 地点) のそれぞれの観測サイトにおいて全天 日射量を常時計測し 10 秒平均している(経済産業省補助事 業). 毎正時前後 30 分間の値を平均し, 生の観測値を時別 値 (1 時間平均値) に換算して精度検証に用いた.また, Fig. 3 中の同心円はそれぞれ名古屋市内にある中部電力・電力 技術研究所からの等距離の地域を示しており, 4.2 節の空間 平滑化効果を議論する際に詳しく説明するが, 括弧内の数 字はその円内に含まれる観測地点の総数を意味している.

予測精度の検証

4.1. 単一地点の予測精度

まず,61地点におけるそれぞれの日射観測値を用いて単 一地点における WRF の予測精度について検証する. Fig.4

Fig. 3 Locations of observational sites

は WRF の当日および翌日予測の月毎および年間の (a) バ イアスおよび (b) RMSE (Root-Mean-Square-Error) を示し ている.バイアスおよびRMSEの定義は以下の通りである.

$$Bias = \frac{1}{N} \sum_{i=1}^{N} (WRF_i - OBS_i)$$
(1)

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (WRF_i - OBS_i)^2}$$
(2)

ここでNはデータ個数,WRFおよびOBSは計算値および

観測値の時別値である. 夜間のデータを含めると見かけ上 の精度が良くなるため,夜間,日の出および日の入り付近 を除く太陽高度が 10°以上 (大気外の水平面日射強度が約 240 W/m²以上)の時間帯のみを対象とした.

図中の棒グラフは地点毎にそれぞれ算出したバイアスお よび RMSE の 61 地点平均値,エラーバーの上端および下 端は 61 地点の最大値および最小値に対応している. Table 2 は棒グラフで示した 61 地点平均の値を示している. また, WRF のみのバイアスおよび RMSE では得られた統計値の 意味を解釈することが難しいので,WRF の予測精度の善し 悪しを議論するためのひとつの参考指標として前日の観測 値を当日又は翌日の予測値とする持続 (Persistent)モデル のバイアスおよび RMSE を併せて示している.前日の観測 値から当日を予測した値を Persistent (Day1)とし,さらに 翌日を予測した値を Persistent (Day2)とした.

まず,持続モデルとWRFのバイアスを比較してみると, 持続モデルは観測値をスライドするだけであるから,月お よび年平均値はほとんどバイアスを含まない.それに対し て,WRF は当日および翌日予測とともに全体的に正のバイ アスを含み,それらは夏季に大きく冬季に小さい傾向があ る.この傾向は観測平均値や大気外日射量で絶対値を除し て規格化した場合でも基本的に変わらない.

先行研究^{11),12)}においても指摘されているように,この 正のバイアスの要因としては,Dudhiaスキームではエアロ ゾルの光学的厚さが季節を問わず一定とされていることや 夏季に発達する積雲の再現性に問題があるものと考えてい る.加えて,現状の予測システムでは初期時刻には計算領 域全体で雲が全く存在しない状態で計算がスタートするか ら,モデル内で雲を十分発達させるためには一定時間の経

Fig. 4 Monthly and annual mean absolute biases and RMSEs of the persistent model and the WRF model in the year 2011. The bars show the average of 61 sites and the error bars show the maximum and minimum values of 61 sites

	2				PD 600 500 / 2			
	Bias [W/m ²]			RMSE [W/m ²]				
Month	Persistent (Day1)	Persistent (Day2)	WRF (Day1)	WRF (Day2)	Persistent (Day1)	Persistent (Day2)	WRF (Day1)	WRF (Day2)
2011-01	-1.6	0.0	40.9	37.8	143.6	151.7	129.0	137.6
2011-02	9.1	5.2	42.0	6.2	217.2	237.9	139.1	163.0
2011-03	-13.1	-18.2	75.8	52.3	209.3	254.0	165.7	162.4
2011-04	6.1	3.7	73.6	112.2	265.6	302.9	195.0	229.6
2011-05	-7.0	-4.7	80.8	99.9	283.3	349.9	195.6	208.6
2011-06	-1.6	-7.2	90.0	108.0	254.3	276.7	220.9	241.5
2011-07	4.6	11.2	122.2	104.7	241.8	267.7	238.8	234.9
2011-08	2.1	-1.3	144.2	157.1	223.5	250.8	256.7	262.4
2011-09	5.1	7.1	76.1	70.0	236.2	305.7	195.2	193.0
2011-10	-6.7	6.4	49.0	33.7	236.5	234.7	137.8	166.8
2011-11	4.8	0.6	27.0	27.0	197.7	237.9	132.5	129.2
2011-12	-1.4	-5.8	23.4	20.7	160.5	170.8	108.4	113.5
Annual	-0.1	-0.1	75.4	75.9	231.0	265.0	189.2	199.7

Table 2 Values of the 61 sites average of absolute biases and RMSEs

過を待つ必要がある.今回の計算では雲を発達させるため の助走時間として 48 時間の時間積分のうち 10 時間分を割 り当てているが,その時間では雲の発達が不十分であるこ とも可能性として考えられる.

続いて, RMSE を比較してみると, 持続モデルの当日お よび翌日予測の年間 RMSE は 231 および 265 W/m² である のに対して WRF は 189.2 および 199.7 W/m² である (Fig. 4 および Table 2). 月毎に詳しく見ても持続モデルの RMSE は WRF に比べて全体的に大きいだけでなく, 春および秋 の値が目立って大きい. これらの季節は高低気圧の移動に 伴って日々の天気の変化が他の季節に比べて著しく, 持続 モデルはこうした季節の予測が不得手であることを示して いる. その一方, WRF では春および秋に予測精度が低下す る傾向は特に見られず, 夏季にバイアスの増加に応じて RMSE は大きくなる傾向はあるものの, 一年を通しての予 測精度の変動は持続モデルに比べれば相対的に小さい. つ まり, より安定した予測精度が期待できると言える.

さらには、当日から翌日予測までの精度低下の割合を比 べてみると、WRF の当日および翌日予測の精度の差はほと んどの月で持続モデルに比べて小さいことがわかる.前日 の観測値をそのまま予測値とすること自体にそもそも大き な無理はあるものの、この過去の観測情報に基づいて未来 を統計的に予測するという持続モデルの基本コンセプトは 衛星リモートセンシングよる予測で用いられる手法と同様 である.つまり、過去の観測値を回帰的に時間発展させる 手法に比較すると物理方程式に基づく気象モデルによる予 測は時間の経過に伴う予測精度の低下が相対的に小さい可 能性が十分にあると言える.

4.2. 空間平均値の予測精度

気象モデルによる日射予測について、電力会社での需給 運用のための利用を想定した場合、単一地点の予測よりも むしろ領域平均での予測の方がより重要となる¹³.本来、 空間平均の予測精度を評価するためには衛星観測値などの 面的に計測された観測値を使用することが望ましいが、こ こでは、有限個数の地上観測値を重ね合わせることで代用 する.Fig.5 (a) および (b) は単一地点および 61 地点平均 の観測値とWRF当日予測の相関図(時別値)である.単一 地点の相関図に含まれるばらつきは地点毎の値を単純に平 均することで著しく小さくなることが見て取れる.図中に 示した年間バイアスおよび RMSE の値を見てみると,バイ アスはほとんど変わらないものの,単一地点の RMSE は空 間平均することにより 191.3 から 124.5 W/m²まで 67 W/m² 減少し,その値は単一地点の RMSE を基準にすると 35 % 改善したことになる.

そもそも大気中における雲の発生・発達過程は極めてカ オス性の強い現象であり、ある大気状態における雲の位置

Fig. 5 Scatter plot of OBS vs. WRF (Day 1) with (a) a single site and (b) 61 sites average

や大きさは極めてランダムである. 初期値に使用する GPV (Grid Point Value) が積雲スケールの細かな空間分解能を持 たないことや雲微物理過程における大胆な近似を考えると, 現状では個々の雲の位置や大きさをピンポイントで予測す ることは恐らく困難である. つまり, Fig.5 (a) の相関図の ばらつきは, WRF における雲の再現性の悪さそのものを反 映した結果である. その一方, (b) の空間平均すると誤差 が互いに相殺されるというのは, 個々の雲の位置や大きさ の予測精度には課題があるものの, 雲の発生や発達に影響 を及ぼす広域の大気環境場については概ね再現できること を示唆する結果である.

次に、空間平滑化によって個々の誤差が相殺され、結果的にRMSEが小さくなる理由とその効果について考察してみる. 単純に時系列同士を重ね合わせるだけで精度が向上する理由は、統計学の中心極限定理¹⁴⁾によって説明することができる. 時系列同士が互いに無相関な場合,母集団の持つ分散を σ^2 とするとき,その時系列n個を重ね合わせた時系列の分散は必然的に σ^2/n になる. つまり、予測誤差の時系列(予測値から観測値を引いた時系列)が互いに無相関である場合、重ね合わせる時系列が増えれば増えるほど誤差の標準偏差である RMSE(厳密にはバイアスを差し引かない誤差の標準偏差)は $1/\sqrt{n}$ の関数に沿って減少することになる.

しかし実際には、地点間距離が短い予測値の時系列同士 は互いに無相関ではないため理論上の重ね合わせ効果は得 られることはない. Fig. 6 は観測地点間の距離と予測誤差 の相互相関係数の関係を示したものである.まず,61 地点 の中から2地点を抽出し、その地点間距離を算出する.さ らに、その2 地点における予測誤差の時系列(計算値マイ ナス観測値)から相関係数を算出した.ここでは61 地点の 中から2 地点を抽出する全ての組合せ(=1,830 通り)につ いて地点間距離と相関係数の関係をプロットしている.ま た、図中には相関係数を地点間距離の関数として表した式 (3)の近似曲線を挿入している.

Fig. 6 Relation between site distance and cross-correlation coefficient of the forecasting error from WRF (Day1)

$f(x) = a \times \exp(b \times x) + c \times \exp(d \times x)$ (3)

ここでxは地点間距離およびa~dは定数である.

予測誤差 (WRF 当日予測) の相互相関は地点間距離が増加するにつれて指数関数的に減少している.重ね合わせの効果は元の時系列同士が無相関であることが前提条件であるから、この結果は、より広い範囲に分布した時系列を重ね合わせることが精度改善には効果的であり、逆に、近い距離にあるもの同士を幾ら平均しても効果が小さいことを示している.ただし、地点間距離が 300 km 離れた時点でも完全には無相関になっていないことに加えて $1/\sqrt{n}$ の関数形はnが大きくなるにつれてその勾配は徐々に緩やかになることから無数の時系列を重ね合わせたとしても無限に精度が改善されていくことを期待することは出来ない.

それでは実際には空間平均する範囲と予測誤差の関係は どうなっているのであろうか?Fig.7は持続モデルおよび WRFの空間平均する範囲(横軸)と空間平均後の時別値の 年間 RMSE(縦軸)の関係を示している.ここで50km半径 の場合を例にとってこの図の作成手順を説明する.まず, 中部電力・電力技術研究所の観測地点を中心に考えるとそ こから50kmの範囲内には34地点の観測地点が含まれる. この34地点の観測値および計算値(持続モデルおよび WRF)を地点平均して50km半径における空間平均値の時 別値を作成する.この観測値および計算値の空間平均値の 時別値から年間 RMSEを算出し,さらに電力技術研究所一 地点での RMSE でその値を規格化した.この操作を0から 240km半径まで10km間隔で繰り返し行って各半径におけ る単一地点と空間平均の RMSE の比率をプロットした.

まず,持続モデルとWRFの結果を比較してみると,持 続モデルのRMSEは平均半径が増加するにつれて単調減少 であるのに対してWRFのそれは指数関数的に減少してい ることがわかる.つまり,元の予測誤差の時系列同士が似 通った傾向になりやすい持続モデルに比べると物理方程式 に基づくWRFの予測は空間平滑化による改善効果をより

Fig. 8 Relation between number of sites and the WRF (Day 1) RMSE including the spatial smoothing effect with the sites

期待できることをこれは意味している.また,空間平滑化 の効果はいずれ頭打ちになることについては既に述べたが, WRFの当日予測の結果を見てみると0から100kmまでの 間でRMSEは約30%改善するが,100から200kmの間で は約5%の改善にとどまる.すなわち,理論的な裏付けが 示す通り空間平滑化による精度改善にはこの辺りに限界が あるようである.

また、平均半径 0~240 km の範囲では平滑化する範囲を 広げれば広げるほどRMSEは減少する傾向があることは確 認出来るが、この方法に意味があるのは対象とする領域に ほぼ一様に太陽光発電施設が分布していることが前提条件 になる. 半径 240 km 全体で考えた場合には太陽光発電の 設置が難しい山岳などの地域が多く含まれるので、ここで 名古屋市の中心から山岳を除いた平坦な地域のみを対象と して平滑化する範囲を見直してみるとそれはおおよそ 50 ~100 km 範囲程度に限定される. すなわち, 現実的に意味 のある空間平均の予測精度としては、単一地点に含まれる RMSE を約 25~30 %程度改善したものだと考えることが できる.これを絶対値に換算すると、単一地点の予測に含 まれる RMSE が約 190 W/m²であるから (Table 2 参照), こ の地域における太陽光発電の設置が主に見込まれる領域で の空間平均値の予測精度はおおよそ 130~140 W/m²程度に なると推測される.

上記の解析では,有限個数の地上観測値および計算値の 重ね合わせによって空間平均値の予測誤差を推定している. それでは空間平均値を算出するために使用するデータ数を 増減させた場合,Fig.7 で得られた結果に大きく影響する のであろうか?この疑問に答えるために,最後に,WRF 当日予測の240 km 半径を一つの例として,平均する際に 使用するデータ個数の影響について検討する.

Fig. 8 は, 240 km の範囲において空間平均値を作成する ために使用する地点数 (横軸) とそれらを使って作成した 空間平均値の年間 RMSE (縦軸) の関係を示している.この 図の作成方法について地点数 30 のケースを例にとって説 明する.まず 61 地点の中から 30 地点を無作為に抽出し, その 30 地点の観測値および計算値から地点平均の時別値 を算出する.この地点平均した観測値および計算値の時別 値から年間の RMSE を算出する.ここで得られる RMSE の値は地点の選択の仕方に依存するのでこの計算プロセス を複数回行ってその平均および標準偏差を図中にプロット している.ここで,61 地点から 30 地点を抽出する組合せ は 20 京通り以上存在し,その全ての組合せについて RMSE を算出することは普通の計算機では不可能である.そこで, ここでは乱数発生器を用いてランダムに地点を選択するプ ロセスを 1000 回繰り返し行い,その抽出結果に基づいて各 地点数毎に 1000 回 RMSE を算出している.図中の白丸お よびエラーバーは平均値および標準偏差±1σの範囲であ る.

61 地点の全ての地点を使用した場合の RMSE は 124.5 W/m²であり、使用する地点数を増やすにつれて RMSE の 値は61地点での値に徐々に漸近していくことがわかる.幾 つの地点を使用した時点でRMSE が収束しているかを確認 してみると 20 以上の地点数を使用した場合の RMSE は最 終的な値とほとんど変わらず、平均値で比べてみると、20 地点と 61 地点の全地点を使用した場合の RMSE の差は 5 W/m²以下である. つまりこの結果は, 240 km 範囲内の空 間平均の精度を評価する際に 61 地点のデータを使用して いるが、これ以上地点数を増やしたとしてもほとんど結果 は変わらない可能性が高いことを示唆している. すなわち, 仮に 240 km の範囲に含まれる平坦地形上の全ての計算格 子点で観測値が得られているとして、それを使って評価し た真の空間平均値の予測精度と 61 地点のみで推定した精 度の間には恐らく大きな乖離が無いことが推測できる. た だし、中部電力の観測サイトは住宅地に近接する平坦な場 所に設置されているため、山岳まで全て含めた空間平均値 の精度と比較した場合には値が大きく異なる可能性は十分 ある.

5. 結語

本研究は、メソ気象モデル WRF を用いた当日および翌 日の日射予測システムを開発し、中部電力管内における 61 地点の日射観測値を用いて単一地点および空間平均値の予 測精度を検証したものである.本研究の得られた主要な結 果を以下にまとめ結語とする.

- 中部電力管内における単一地点での WRF 当日予測の 年間バイアスは 75.4 W/m² (61 地点平均値) および RMSE は 189.2 W/m²;翌日予測のバイアスは 75.9 W/m²および RMSE は 199.7 W/m²である.
- 2. 月毎のバイアスより,WRF による日射計算では先行 研究の結果と同様に,観測値に対して全体的に過大評 価しやすい傾向があり,その絶対値は夏季に大きく冬 季に小さい.また,月毎の RMSE より,持続モデル と比較すると一年を通してみた場合の RMSE の変化

が相対的に小さく,また予測時間が経過した際の精度 の低下傾向も同じく小さい.

- 予測誤差の相互相関は、地点間距離が離れるにつれて 指数関数的に小さくなる. その値は、当日予測で約 100 kmの距離がある場合の相関係数は約 0.25,約 300 kmの場合は 0.1 である.
- 4. WRF による日射予測では空間平滑化することにより バイアスは変化しないものの, RMSE については大幅 な改善が期待できる.名古屋市内を中心とした 100 km 範囲で空間平滑化した場合,当日予測で単一地点 に比べて約 30%の RMSE の改善効果がある.
- 5. 空間平均を算出する地点数と RMSE の関係より、今回、使用している中部電力管内で 61 地点の予測値および観測値を使用すればこの地域における平坦地形での空間平均値の予測誤差を議論することが十分出来る.

謝 辞

本論文の改稿の際には匿名の査読者2名より有益なご指 摘およびコメントを賜った.ここに感謝の意を表する.

参考文献

- Lorenz, E., J. Hurka, D. Heinemann and H.G. Beyer, *Irradiance Forecasting for the Power Prediction of Grid-Connected Photovoltaic Systems.* Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009. 2(1): p. 2-10.
- 2) 大関崇,加藤丈佳,荻本和彦,太陽光発電の発電量予測の 現状と課題.電気学会研究会資料,メタボリズム社会・環境 システム研究会,2011.2011(1): p. 19-24.
- Hammer, A., D. Heinemann, C. Hoyer, R. Kuhlemann, E. Lorenz, R. Muller and H.G. Beyer, *Solar energy assessment using remote sensing technologies*. Remote Sensing of Environment, 2003. 86(3): p. 423-432.
- Lorenz, E., J. Remund, S.C. Mueller, W. Traunmueller, Steinmaurer, D. G., J.A. Ruiz-Arias, V.L. Fanego, L. Ramirez, M.G. Romeo, C. Kurz, L.M. Pomares and C.G. Guerrero, *Benchmarking of different approaches to forecast solar irradiance*, in 24th European Photovoltaic Solar Energy Conference2009.
- Lara-Fanego, V., J.A. Ruiz-Arias, D. Pozo-Vazquez, F.J. Santos-Alamillos and J. Tovar-Pescador, *Evaluation of the WRF* model solar irradiance forecasts in Andalusia (southern Spain). Solar Energy, 2012. 86(8): p. 2200-2217.
- Skamarock, W.C., J.B. Klemp, J. Dudhia, D.O. Gill, D.M. Barker,
 W. Wang and J.G. Powers, *A description of theadvanced research WRF version 3.* Tech. Note TN-475+STR, 2008: p. 1-96.
- Dudhia, J., Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. Journal of the Atmospheric Sciences, 1989. 46(20): p. 3077-3107.
- 8) 気象庁全球数値モデル GPV, Available from:

http://www.jmbsc.or.jp/hp/online/f-online0a.html.

- 9) 米国環境予報センター GFS, Available from: http://www.nco.ncep.noaa.gov/pmb/products/gfs/.
- Donlon, C.J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler and W. Wimmer, *The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system.* Remote Sensing of Environment, 2012. 116: p. 140-158.
- 11) Zamora, R.J., S. Solomon, E.G. Dutton, J.W. Bao, M. Trainer, R.W. Portmann, A.B. White, D.W. Nelson and R.T. McNider, *Comparing MM5 radiative fluxes with observations gathered during the 1995 and 1999 Nashville southern oxidants studies.* Journal of Geophysical Research-Atmospheres, 2003. **108**(D2).
- 嶋田進,劉媛媛,夏慧,吉野純,小林智尚,板垣昭彦,宇 都宮健史,橋本潤,メソ気象モデル WRF による日射計算の 精度検証.太陽エネルギー,2012.38(5): p.41-48.
- Lange, M. and U. Focken, *Physical approach to short-term wind power prediction*2006: Springer.
- 14) 東京大学教養学部統計学教室,統計学入門 1991:東京大学 出版会.