水集熱式太陽熱暖房システムの簡易設計法に関する研究 第1報 簡易設計法の提案

Studies on Simplified Design Method for Water Based Solar Heating System Part.1 Proposal for Simplified Design Method

北野 博亮^{*1} Hiroaki KITANO 相良 和伸^{*2} Kazunobu SAGARA 岩田 剛*³ Takeshi IWATA

Abstract

The purpose of this study is to develop a simplified design method for a water-based solar heating system with a temperature-stratified thermal energy storage tank. In this paper, several equations to determine a capacity of the thermal energy storage tank and collector area and a design method based on these equations are presented. The simple equations solved analytically are derived from results of solar heating system simulations. By using the equations, the necessary and sufficient tank capacity, solar collector area and other design parameters are determined. And as a result of system simulations under various design conditions, it was found that the simplified design method allows to design appropriate heating system under ordinary design conditions.

キーワード:太陽熱暖房,設計手法,温度成層型蓄熱槽 *Key Words*: Solar Heating, Design method, Temperature-stratified thermal energy storage tank

1. はじめに

ー般に、太陽熱暖房システムは初期投資額を節約できた エネルギー費で短期に償却することは容易ではないことか ら、太陽熱暖房システムの最適設計は非常に重要であると 言える。太陽熱暖房システムの設計手法¹⁾としては、太陽 熱依存率等の期間性能をシミュレーションや*f*-chart法によ り求め、設計パラメータの最適な組み合わせを試行錯誤に より求める方法が一般的である。しかし住宅設計に携わる 小規模な設計事務所では対応が難しく、合理的で簡易な設 計手法が必要であると考えられる。

シミュレーション手法によって太陽熱利用システムの集 熱器面積と蓄熱槽容量の最適容量に関する検討^{2,3)}が行わ れているが,設計手法の提案にまでは至っていない。

筆者ら⁴⁾⁵⁾⁶は,砕石蓄熱槽を有する空気集熱式太陽熱暖 房システムについて,代表的な一日に集熱した太陽熱でそ の日の暖房負荷を賄うことのできるシステムを設計の目安 とした簡易設計法の検討を行ってきた。その結果,集熱風 量に応じた最適な砕石蓄熱槽容量とそのときの一日の蓄熱 量の関係を近似的に表す関係式を示し,これらの関係式を 用いた簡易設計法を提案した。また,この簡易設計法によ り設計されたシステムの暖房期全体の長期シミュレーショ ンによって,本簡易設計法により決まる蓄熱槽容量と集熱 器面積,集熱時および放熱時の風量の容量バランスがおお むね妥当であることを確認した。

本論文(第1報)では、温度成層型蓄熱槽を有する水集 熱方式の太陽熱暖房システムを対象として、蓄熱槽容量に 関する同様の検討結果を示し、その簡易設計手法を提案す る。なお、第2報では暖房期全体の長期シミュレーション による本簡易設計法の検証を行う予定である。

Fig. 1 Schematic diagram of solar heating system 図 1 対象システムの概略図

^{*1} 三重大学大学院工学研究科助教(〒514-8507 津市栗真町屋 町 1577) e-mail: kitano@arch.mie-u.ac.jp

^{*2} 大阪大学大学院工学研究科教授

^{*3} 三重大学大学院工学研究科技術専門員 (原稿受付:2012年8月27日)

表1	計算条件				
Location	Tokyo (lat. 35° N.)				
Date	February 1				
Weather	Fair weather				
Atmospheric transmittance ⁵⁾	0.78				
Solar constant ⁵⁾	1.37 kW/m^2				
Ambient temperature	0 °C (constant)				
Solar Collector					
Azimuth	0° (due south)				
Tilt angle	45°				
$F'K_{col}$ [W/m ² K]	5.16				
$F'(\tau \alpha)_e$ [-]	0.80				
Surface of absorber plate	Selective absorption membrane				
Temperature-stratified thermal energy storage tank					
Water depth	2.0 m				
Inlet / Outlet	Two horizontal circular pipes				
	of 50mm diameter				
Initial temperature	25 °C				

Table 1 Calculation conditions

対象としたシステムは, Fig. 1 に示した平板型集熱器, 温度成層型蓄熱槽,ファンコイルユニット,室から構成さ れる水集熱方式の太陽熱暖房システムであり,本研究では, 集熱器面積,蓄熱槽容量,集熱流量,ファンコイルユニッ トの温水流量および風量を設計パラメータとみなし,これ らの容量決定手法を提案する。

3. 蓄熱槽容量と蓄熱量の関係

3.1 数値シミュレーションのモデル

集熱・蓄熱特性の把握のため,集熱器のモデルと温度成層 型蓄熱槽の槽内混合モデルを用いて数値計算を行った。こ のシミュレーションでは,集熱器以外の配管や蓄熱槽から の熱損失とポンプでの発熱や摩擦による熱取得は相殺され るものと仮定し,これらの影響は無視している。

(1) 集熱器 Hottel-Whillier の集熱器効率の一次の定義 式^{1), 7)} (式(1)) と,集熱量と集熱面入射日射量の比で表さ れる効率の式(式(2))を用いた。集熱用ポンプに変流量方 式を想定しているので,集熱器の出口温度 $\theta_{col,vo}$ が集熱器 出口温度の制御目標値(以下では集熱設定温度) $\theta_{col,vset}$ に 等しくなる集熱流量 F_{cv} を式(3)により求める。

$$\eta = F'(\tau \alpha)_e - F'K_{col} \frac{\left(\theta_{col,v,o} + \theta_{col,i}\right)/2 - \theta_{amb}}{I_{col}} \tag{1}$$

$$\eta = \frac{q_{col}}{I_{col}A_{col}} = \frac{c_w \rho_w F_{c,v} \left(\theta_{col,v,o} - \theta_{col,i}\right)}{I_{col}A_{col}}$$
(2)

$$F_{c,v} = \frac{F'(\tau \alpha)_e I_{col} - F'K\left(\frac{\theta_{col,v,set} + \theta_{col,i}}{2} - \theta_{amb}\right)}{c_w \rho_w \left(\theta_{col,v,set} - \theta_{col,i}\right)} A_{col}$$
(3)

(2) 温度成層型蓄熱槽 温度成層型蓄熱槽の槽内温度分 布の計算には、流入温度および流量が変動する条件にも適 用できる槽内混合モデル⁸⁾を用いた。このモデルでは鉛直 方向の移流と拡散による熱移動、および流入条件に応じた 流入水と槽内水の混合を考慮している。このモデルを用い て蓄熱槽内の鉛直温度分布を求め、集熱器入口温度および ファンコイルの温水入口温度となる蓄熱槽からの取水温度 を求めた。

一日の蓄熱量(Q_c)は、集熱終了時の蓄熱槽内温度から、 次式を用いて計算した。

$$Q_c = c_w \rho_w A_{st} \int_0^{H_{st}} \left(\theta_{st,s} \right|_{t=t_c} - \theta_o \right) dx \tag{4}$$

(3) 加熱コイル ファンコイルユニット内の加熱コイル のモデルとして, TRNSYS⁹で使用されているモデルを用 いることとした。温水出入口温度,空気出入口温度,温水 流量と風量および交換熱量等の関係は式(5)から式(7)で表 される。

$$\theta_{hww,o} = \theta_{hww,i} - \varepsilon \frac{c_{min}}{c_w \rho_w F_{hw,w}} \left(\theta_{hww,i} - \theta_{hwa,i} \right)$$
(5)

$$q_{ex} = \varepsilon c_{\min} \left(\theta_{hww,i} - \theta_{hwa,i} \right) \tag{6}$$

$$\begin{cases} \varepsilon = \frac{1 - \exp\left\{-\frac{UA_{hex}}{c_{min}}\left(1 - \frac{c_{min}}{c_{max}}\right)\right\}}{1 - \frac{c_{min}}{c_{max}}\exp\left\{-\frac{UA_{hex}}{c_{min}}\left(1 - \frac{c_{min}}{c_{max}}\right)\right\}} & (c_{min} \neq c_{max}) \\ \varepsilon = \frac{UA_{hex}}{UA_{hex} + c_{min}} & (c_{min} = c_{max}) \end{cases}$$

ここで、 c_{min} と c_{max} はそれぞれ $c_a \rho_a F_{hw,a}$ と $c_w \rho_w F_{hw,w}$ のうち 小さい方と大きい方の値である。

3.2 計算条件および計算方法

Table 1 に計算条件を示した。ここでは、気象条件として 東京の2月1日の晴天日を例として検討している。集熱器 の方位角を0°(真南)、傾斜角を45°とし、集熱時の外気温 度は0℃一定とした。集熱器面への日射量は、Bouguerの 直達日射量の式とBerlageの天空日射量の式による計算値 を用いた⁷⁾。温度成層型蓄熱槽の水深は2mとし、上部お よび下部の流入出口はそれぞれ2口の直径50mmの円管と し、蓄熱槽の水面と槽底に接しているものとした。蓄熱槽 内初期温度は、25℃一様としているが、これは、ファンコ イルユニットからの還り温度を25℃(室温+5℃)と想定 しているためである。

本論文で対象としている太陽熱暖房システムでは、定温 度・変流量集熱を想定しているが、流量の制御範囲を次の ように限定した。集熱用ポンプの最大流量は、集熱器入口 温度が蓄熱槽初期温度に等しく、集熱器面への日射量が最 大値となる条件の下で集熱温度が集熱設定温度となる流量 であるとして、式(8)で定まる値とした。また、制御下限値 はこの最大流量の 30%とした。

$$F_{c,v,max} = \frac{F'(\tau\alpha)_e I_{col}\Big|_{max} - F'K\left(\frac{\theta_{col,v,set} + \theta_o}{2} - \theta_{amb}\right)}{c_w \rho_w \left(\theta_{col,v,set} - \theta_o\right)} A_{col}$$
(8)

式(3)で求めた集熱流量が制御範囲外の場合には,式(3) の集熱流量を集熱流量の上限値または下限値として集熱器 出口温度について整理した式(9)により集熱温度を求めた。

$$\theta_{col,v,o} = \left(c_w \rho_w \frac{F_{c,v,lim}}{A_{col}} + \frac{F'K}{2} \right) \left\{ \left(c_w \rho_w \frac{F_{c,v,lim}}{A_{col}} - \frac{F'K}{2} \right) \theta_{col,i} + F'(\tau \alpha)_e I_{col} + \theta_{amb} F'K \right\}$$

$$(9)$$

ここに F_{c,vlim} は集熱流量の上限値または下限値である。

集熱運転の条件は、集熱器入口温度が集熱設定温度より も低く、式(9)で集熱流量($F_{c,vlim}$)を0としたときに集熱器の 出口温度が集熱設定温度($\theta_{col,vsel}$)よりも高くなるときとし た。すなわち、集熱器面への日射量が式(10)を満たし、集 熱器入口温度が集熱設定温度よりも低いときに集熱運転を 行うこととした。

$$H_{col} > \frac{F'K_{col} \left(\frac{\theta_{col,v,set} + \theta_{col,in}}{2} - \theta_{amb}\right)}{F'(\tau\alpha)_{col}}$$
(10)

3.3 蓄熱槽容量と蓄熱量の関係

Fig. 2 は集熱器単位面積あたりの一日の蓄熱量の計算結 果であり,集熱器単位面積あたりの蓄熱槽容量との関係を 集熱設定温度毎に示している。この図は集熱器面積が20 m² の場合の結果であるが,集熱器面積が異なる場合であって もほぼ同様の結果が得られる。一般に,蓄熱槽容量が大き くなるほど槽出口温度(=集熱器入口温度)が上昇し難く なるため,平均集熱効率が高くなり蓄熱量が増大するが, 槽出口温度は槽内初期温度以下にはならないので,集熱器 への入口温度が常に槽内初期温度である場合の積算集熱量 以上には増大しない。この蓄熱量を以下では限界蓄熱量と 呼ぶ。また,集熱温度が低いほど蓄熱密度は低くはなるが, 集熱効率が高くなるため,この限界蓄熱量は増大すること になる。

Fig. 3 には,集熱設定温度が 50 ℃ の場合について,集熱 器の出入口温度および集熱流量と蓄熱槽内温度分布を示し ている。この図から,集熱器単位面積当たりの蓄熱槽容量 が 0.08 m³/m²の場合は,集熱器入口温度(蓄熱槽下部出口 温度)の上昇が早く,日射量が十分に大きいにもかかわら ず集熱が早く終了することから,蓄熱槽容量不足であると 言える。また蓄熱槽容量が 0.20 m³/m²の場合には,蓄熱槽 下部の温度が初期温度にほぼ等しく,蓄熱槽が過大である ことが分かる。一方,蓄熱槽容量が 0.12 m³/m²の場合には, 一日の蓄熱量は Fig. 2 から上述の限界蓄熱量にほぼ等しく, また Fig. 3 の右図から蓄熱槽全体の温度が集熱温度でほぼ 一様であることから,この蓄熱槽容量は限界蓄熱量を蓄熱 するのに必要十分であると言える。

シミュレーション結果から,本論文では,限界蓄熱量を ほぼ蓄熱できる最小の蓄熱槽容量を容量効率の観点から見 た最適蓄熱槽容量と定義する。

4. 簡易設計法

4.1 最適蓄熱槽容量

Fig. 2 に示した蓄熱槽容量と蓄熱量の関係を表す特性曲

図3 集熱器出入口温度と流量と蓄熱槽内温度分布

線は,最適蓄熱槽容量付近を境に二つの部分に分けること ができる。蓄熱槽容量の増加に伴って蓄熱量が増大する部 分と蓄熱槽容量に関わらず蓄熱量が一定の値となる部分で ある。ここでは,最適蓄熱槽容量を近似的に求めるため, 以下に示す蓄熱量についての二つの関係式を導出した。両 式の導出にあたって,集熱流量に制限は無く,集熱してい る間は集熱器出口温度が集熱設定温度に等しいと仮定した。 これら二つのモデル式の連立解として集熱設定温度と最適 蓄熱槽容量の関係とそのときの蓄熱量を得るための理論的 な検討を行う。

(1) 槽容量が最適蓄熱槽容量よりも十分に大きい場合の蓄 熱量 蓄熱槽容量が最適蓄熱槽容量よりも十分に大きい 場合には、集熱時は集熱器入口温度が常に槽内初期温度に 等しいと仮定でき、集熱器面への日射量が式(11)を満たす 間($t_s \sim t_{Ve}$)は集熱できる。このとき一日の蓄熱量は集熱 量に等しく、式(12)で表すことができる。式(12)の集熱流量 F_{cv} に式(3)を代入した式(13)は、集熱器の特性と集熱設定温 度に応じた限界蓄熱量を近似的に表す式である。

$$I_{col} > \frac{F'K\left(\frac{\theta_{col,v,set} + \theta_0}{2} - \theta_{amb}\right)}{F'(\tau\alpha)_e}$$
(11)

$$Q_c = c_w \rho_w \left(\theta_{col,v,set} - \theta_0\right) \int_{t_s}^{t_{Ve}} F_{c,v} dt$$
(12)

$$\frac{Q_c}{A_{col}} = F'(\tau \alpha)_e \int_{t_s}^{t_{r_e}} I_{col} dt
- F'K\left(\frac{\theta_{col,v,set} + \theta_{col,i}}{2} - \theta_{amb}\right) (t_{Ve} - t_s)$$
(13)

(2) 槽容量が最適蓄熱槽容量よりも十分に小さい場合の蓄 熱量 一方, 蓄熱槽容量が最適蓄熱槽容量よりも十分小 さい場合は, Fig. 3(a)に示したように, 蓄熱槽下部の水温が 集熱終了前に上昇して, 集熱器入口温度が上昇し, 集熱器 出口温度を集熱設定温度に制御するために集熱流量が増大 する。理論的には, 集熱器入口温度が集熱設定温度に等し くなるときに集熱流量は無限大の値となり, 集熱終了時に 蓄熱槽内が一様に集熱設定温度になると考えられる。この ときの蓄熱量は蓄熱槽の熱容量と蓄熱開始時と終了時の温 度差から次式で求められる。

$$Q_c = c_w \rho_w \left(\theta_{col,v,set} - \theta_0 \right) V_{st}$$
⁽¹⁴⁾

Fig. 4 には、シミュレーションによる蓄熱槽容量と一日の蓄熱量の関係および式(13)と式(14)の計算結果を示した。 蓄熱槽容量が最適蓄熱槽容量よりも大きい条件では、シミ ュレーション結果の蓄熱量が式(13)の値よりも若干大きい が、式(13)と式(14)の交点として、それぞれの集熱温度での 限界蓄熱量と容量効率の点で最適な蓄熱槽容量を近似的に 得られることが分かる。

(3) 最適蓄熱槽容量の近似式 さらに、式(13)と式(14) の交点として近似的に得られる最適蓄熱槽容量は、両式か ら一日の蓄熱量 Q_cを消去して、蓄熱槽容量 V_{st}を最適蓄熱 槽容量 V_{opt} とした次式で表される。

$$V_{opt} = \int_{t_{opt}}^{t_{end}} F_{c,v} dt \tag{15}$$

この式では,最適蓄熱槽容量は集熱時の積算流入水量に 等しい槽容量であることを表している。

集熱器の特性や集熱設定温度,外気温度等の設計条件と 集熱器単位面積あたりの容量効率の点で最適な蓄熱槽容量 の関係は,式(15)の集熱流量 F_{cv}に式(3)を代入した式(16) で表すことができる。

$$V_{opt} = \frac{Q_c}{c_w \rho_w \left(\theta_{col,v,set} - \theta_0\right)} \tag{16}$$

Fig. 5 には最適蓄熱槽容量の式(16)による近似解とその ときの一日の蓄熱量を示している。

4.2 簡易設計手法

容量効率の点で最適な蓄熱槽容量と一日の蓄熱量を近似 的に求めることのできる関係式を用いた,太陽熱暖房シス テムの簡易設計手法を提案する。

ここでは、一日の蓄熱量を暖房時にすべて放熱できると 仮定した場合の集熱器面積、蓄熱槽容量、集熱流量および 放熱時の温水流量と風量の算定法を示す。以下ではこの一 日の蓄熱量を蓄熱容量と呼ぶこととする。なお、太陽熱暖 房システムの主要な設計パラメータである集熱設定温度は、 その値が低いほど集熱効率が高くなり集熱器面積を低減で きるが、一方で蓄熱密度は低くなるため蓄熱槽容量が増大 し、ファンやポンプ動力が増大することになる。したがっ て、本研究では集熱設定温度は設計者が建物側の制約や経 済的な観点から決定するものとし、設計条件として与えら れるものとする。

(1) **集熱器面積** 式(13)中の一日の蓄熱量 Q_cを蓄熱容量

Fig. 4 Comparison results among Eq. (13), Eq. (14) and numerical simulation

図4 シミュレーションによる蓄熱槽容量と一日の蓄熱量 の関係および式(13)と式(14)

図 5 最適蓄熱槽容量の式(16)による近似解とそのときの一 日の蓄熱量

 Q_s に置き換え, 蓄熱槽内初期温度 θ_0 を加熱コイルの温水出 口温度 $\theta_{hww,o,dc}$ に等しいとして置き換えて, 集熱器面積 A_{col} について表すと式(17)となる。この式(17)を用いて集熱器面 積 A_{col} を求める。集熱可能な時間 $t_{Ve} - t_s$ は集熱器面日射量 が式(11)の蓄熱槽内初期温度 θ_0 を加熱コイルの温水出口温 度 $\theta_{hww,o,dc}$ に置き換えた式(18)の不等式を満たす時間であり, 集熱可能な時間の積算日射量は, その間の集熱器面日射量 の積算値として求めることができる。

$$A_{col} = Q_s \left/ \left\{ F'(\tau \alpha)_e \int_{t_s}^{t_{re}} I_{col} dt - \left(\frac{\theta_{col,v,set} + \theta_{hww,o,dc}}{2} - \theta_{amb} \right) F'K(t_e - t_s) \right\}$$

$$I_{col} > \frac{F'K\left(\frac{\theta_{col,v,set} + \theta_{hww,o,dc}}{2} - \theta_{amb} \right)}{F'(\tau \alpha)_e}$$
(18)

(2) 集熱流量の制御上限値 集熱流量の制御上限値 *F_{c,nmax}* は,集熱器入口温度が加熱コイル温水出口温度(初 期槽内温度)に等しく,設計条件とした日の集熱器面日射 量が最大値 *I_{col|max}* であるときに,集熱器出口温度が集熱設 定温度に等しくなる流量とした式(19)により求めることと した。

$$F_{c,v,max} = \frac{1}{c_w \rho_w \left(\theta_{col,v,set} - \theta_{hvw,o,dc}\right)} \times \left\{ F'(\tau \alpha)_e I_{col} \Big|_{max} A_{col} - F'K\left(\frac{\theta_{col,v,set} + \theta_{hvw,o,dc}}{2} - \theta_{amb}\right) A_{col} \right\}$$
(19)

(3) 蓄熱槽容量 温度成層型蓄熱槽の容量は,式(16)の 蓄熱槽内初期温度 θ₀ を加熱コイルの温水出口温度 θ_{hww,o,dc} に置き換えた式(20)により算出する。

$$V_{opt} = \frac{Q_s}{c_w \rho_w \left(\theta_{col,v,set} - \theta_{hww,o,dc}\right)}$$
(20)

(4) 加熱コイル 本研究では,集熱設定温度と室温,暖 房負荷の最大値を設計条件(Table 2) とし,加熱コイルの 熱通過係数,温水流量および風量の制御上限値を設計する こととし,温水配管の設計と配管やダクト等での圧力損失 の計算は別途行われるものとした。

以上の条件から,加熱コイルを通過する風量の制御上限 値は、コイル出入口空気温度の設計条件の下で暖房負荷の 最大値を処理できる風量であるとして式(21)を用いて求め る。同様に温水流量の制御上限値はコイル出入口水温から 式(22)で求める。加熱コイルの熱交換効率 ε は、式(6)を熱 交換効率について表した式(23)を用いて求め、式(7)を熱通 過係数 UA_{hex} について表した式(24)により熱通過係数を求 めることとした。

$$F_{hwa,\nu,max} = \frac{q_{h,max}}{c_a \rho_a \left(\theta_{hwa,o,dc} - \theta_{hwa,i}\right)}$$
(21)

表2 加熱コイルの設計条件					
Inlet water temperature $\theta_{hww,i,dc}$	Preset temperature of collector outlet $\theta_{col,set}$				
outlet water temperature $\theta_{hww,o,dc}$	Control temperature of room+ 5 °C				
Inlet air temperature $\theta_{hwa,i}$	Control temperature of room				
outlet air temperature $\theta_{hwa,o,dc}$	$\theta_{hww,i,dc}$ -10 °C				
Exchanger heat duty q_{ex}	Maximum heating load $q_{h,max}$				

Table 2Design conditions of heating coil

Table 3 Calculation conditions 主 2 計管冬供

衣 5 町 昇木 H				
Thermal storage capacity (Q_s)	100, 200, 400 MJ			
Heating load	Constant load for 6 hours			
	$= Q_s (\mathbf{J}) / (6 \text{ hrs} \times 3600)$			
Control temperature of room	18, 20, 22 °C			
Ambient temperature	0, 5, 10 °C			
Water depth in storage tank	1, 2, 4 m			
Initial dimensionless depth of mixed region $R_{m0}^{(\pm)}$	0.1, 0.06, 0.018			
Type of solar collector	Type A, Type B, Type C (Table 4)			
Solar radiation on collector surface	Solar radiation of 1 and 0.7 times of the value under the condition of Table 1			
Set temperature of collector outlet	40, 50, 60 °C			

Table 4 Specifications of solar collectors 表4 集熱器の仕様

Type of solar collector	Type A	Type B	Type C
$F'K \left[W/(m^2 K) \right]$ $F'(\tau \alpha)_e \left[- \right]$	3.98 0.82	5.16 0.80	6.56 0.85
Absorber plate coating	Selective absorption membrane	Selective absorption membrane	Black painting
Convective heat loss reduction	FEP film	-	-

$$F_{hww,v,max} = \frac{q_{h,max}}{c_w \rho_w \left(\theta_{hww,i,dc} - \theta_{hww,o,dc}\right)}$$
(22)

$$\varepsilon = \frac{q_{h,max}}{c_{min} \left(\theta_{hww.i.dc} - \theta_{hwa.i} \right)}$$
(23)

$$\begin{cases} UA_{hex} = -\frac{c_{max} c_{min}}{c_{max} - c_{min}} \ln \left(\frac{1 - \varepsilon}{1 - \varepsilon \frac{c_{min}}{c_{max}}} \right) & (c_{min} \neq c_{max}) \\ UA_{hex} = c_{min} \frac{\varepsilon}{1 - \varepsilon} & (c_{min} = c_{max}) \end{cases}$$
(24)

5. 蓄熱容量の補正

蓄熱容量が日積算暖房負荷に等しいとして,前述の機器 容量の算定法に従って設計したシステムでは,蓄熱槽内で 流入水と槽内水の混合があるため,混合がない理想的な集 熱・蓄熱を想定した場合の蓄熱量(蓄熱容量)を得ること はできないし,放熱時間帯のすべての負荷を処理して,槽 内が加熱コイルの温水出口温度で一様温度となることもな いと考えられる。したがって,蓄熱容量が日積算暖房負荷 に等しいとして設計したシステムでは,想定している暖房 負荷を全て賄うことができないと考えられる。そこで,設 計条件とする暖房負荷を全て賄うことのできる太陽熱暖房 システムを設計するために,システムの規模補正について 検討する。

ここでは,4.2 で示した設計法により設計したシステムに ついて, 蓄熱および放熱の繰返し運転のシミュレーション を行い, 周期的定常状態における日積算放熱量を求め, 蓄 熱容量と日積算放熱量の関係を明らかにする。蓄熱容量に 対する一日の積算放熱量の比は, 暖房負荷をすべて処理で きる太陽熱暖房システムの蓄熱容量と日積算暖房負荷の比 を近似的に表すことになるので, この比を規模補正係数と 呼ぶこととし,各種設計条件を説明変数とした回帰式によ って規模補正係数を近似的に求めるための検討を行う。

5.1 計算条件

設定室温や外気温度, 蓄熱槽の形状, 集熱器の特性等の 設計条件が, 規模補正係数へ与える影響について検討を行 う。ここでは, Table 3 に示した条件の全ての組み合わせに ついて蓄熱・放熱繰返し運転のシミュレーションを行い, ほぼ周期的定常状態となった一日間の計算結果から規模補 正係数(蓄熱容量に対する日積算放熱量の比)を求めた。 Table 3 中の性能の異なる3種類の集熱器¹⁰⁾については Table 4 にその仕様と効率特性を示した。ここでは, 暖房負 荷は一定値であるとし, 日積算暖房負荷は蓄熱容量に等し いとしている。暖房負荷のパターンが日積算放熱量に与え る影響は小さくはないが, 暖房負荷が一定値である場合に は, その他の負荷パターンに比べ規模補正係数は相対的に 小さい値となる⁶。したがって, ここでの検討結果を用い れば安全側の設計となると考え, 暖房負荷が一定値である 場合について検討する。

Table 5 には集熱側システムの機器容量を示した。

Fig. 6 には、規模補正係数 R_{nw} と集熱設定温度の関係を示している。この図から、規模補正係数はほぼ 1.0 に近い値であり、集熱設定温度が高いほど、規模補正係数の値は小さくなる傾向にあることが分かる。また、規模補正係数の値が定性的に低くなる条件は、(1)集熱設定温度が高い、(2)集熱器の熱損失係数が大きい、(3)集熱器の日射吸収率が小さい、(4)日射量が小さい、(5)蓄熱槽の水深が浅い、(6)蓄熱槽の R_{m0} の値^{注)}が大きい等である。

規模補正係数についての回帰式の関数形を式(25)と定めた。この式の3つの係数は修正パウエル法¹¹⁾を用いて同定し, *p*_{wv1}=0.988, *p*_{vv2}=-5.01×10⁻⁴, *p*_{vv3}=24.0を得た。

$$R_{vw} = p_{vw1} + p_{vw2} H_{st}^{-0.5} \frac{F'K(\theta_{col,v,set} - \theta_{amb})}{F'(\tau\alpha)_e I_{col,ave}}$$

$$\times \left(\theta_{col,v,set} - \theta_{hww,o,dc} + p_{vw3}\right) \left(\frac{1}{1 - R_{m0}}\right)^2$$
(25)

Fig. 7 には、式(25)による規模補正係数の近似解とシミュレーションによる精算解との関係を示している。この結果から、Table 3 に示した設計条件の範囲内では、式(25)によ

Table 5 Components capacity of solar heating system to be simulated

表 5	5 シス	テム	、の機	器容	量
-----	------	----	-----	----	---

	Set temperature of collector outlet [°C]		tre of t [°C]
	40	50	60
Solar collector area [m ²]	8.5	9.0	9.7
Volume of thermal energy storage tank [m ³]	1.59	0.96	0.68
Upper limit of solar collector flow rate [m ³ /h]	0.295	0.180	0.132
Heating coil			
Upper limit of hot water flow rate [m ³ /h]	0.265	0.159	0.114
Upper limit of air flow rate [m ³ /h]	1,382	691	461
Overall heat transfer coefficient [W/K]	642	642	642
Heating load [kW]		4.63	

These values are under the condition of thermal storage capacity: 100MJ, ambient temperature: 0°C, control temperature of room: 20°C, solar radiation on collector surface: Table 1, type of solar collector: Type B

(Heat storage capacity : 200MJ, Ambient temperature : 0 °C)

(b) Effect of initial dimensionless depth of mixed region, R_{m0} (Heat storage capacity : 200MJ, Solar collector : Type B)

temperature of collector outlet 図 6 集熱設定温度と規模補正係数 R_{vv} の関係

り±0.7%以内の誤差で規模補正係数 R_{wv} を予測できることがわかる。

式(25)で表される規模補正係数を用いることで、太陽熱 暖房システムの機器容量算定の際に用いる蓄熱容量 Q_s を 式(26)により近似的に求めることができる。また、この補 正は暖房負荷が $1/R_{w}$ 倍になることに相当するので、加熱 コイルでの設計条件下での交換熱量を $1/R_{w}$ 倍の値に補正 する必要があり、加熱コイルの風量と温水流量の制御上限 値は、それぞれ式(21)と式(22)を $1/R_{w}$ 倍した式(27)と式(28) から求めることになる。また、熱通過係数は式(25)から求 めるが、式中の ε は、式(23)を $1/R_{w}$ 倍とした式(29)により 求めることになる。

$$Q_s = \frac{Q_h}{R_{vw}} \tag{26}$$

$$F_{hwa,v,\max} = \frac{1}{R_{vw}} \frac{q_{h,\max}}{c_a \rho_a \left(\theta_{hwa,o,dc} - \theta_{hwa,i}\right)}$$
(27)

$$F_{hww,v,\max} = \frac{1}{R_{vw}} \frac{q_{h,\max}}{c_w \,\rho_w \left(\theta_{hww,i,dc} - \theta_{hww,o,dc}\right)} \tag{28}$$

$$\varepsilon = \frac{1}{R_{vv}} \frac{q_{h,\max}}{c_{min} \left(\theta_{hvw,i,dc} - \theta_{hva,i}\right)}$$
(29)

5.2 簡易設計法のまとめ

規模補正を考慮した簡易設計法を Table 6 にまとめる。本 簡易設計法により,設計条件(暖房負荷,集熱器の特性, 蓄熱槽の水深,集熱器面日射量,集熱設定温度,集熱時平 均外気温度,加熱コイルの温水および空気の出入口温度) から,集熱器面積,蓄熱槽容量,集熱流量の制御上限値お よび加熱コイルの温水流量と風量の制御上限値および熱通 過係数を求めることができる。

本簡易設計法の設計手順を以下に示す。

図7 規模補正係数 R_wの式(25)による近似解とシミュレー ションによる精算解の比較

- 太陽熱暖房システムの規模補正係数を,加熱コイル温水出口温度の設定値,蓄熱槽水深,集熱器特性等から, 式(25)を用いて求める。
- ② 集熱可能な時間を,集熱器の特性,任意の時刻の集熱器面日射量,集熱設定温度,集熱時の平均外気温度の設計条件から式(18)を用いて求め,③で集熱器面積を求めるときに必要なその間の積算日射量を求める。
- ③ 集熱器面積を,集熱可能な時間,規模補正係数,集熱時の集熱器面の積算日射量等の条件から,式(17)と式 (26)により求める。
- 番熱槽容量を,規模補正係数,加熱コイルの出口水温, 集熱設定温度等の設計条件から式(20)と式(26)により 求める。
- ⑤ 集熱流量の制御上限値は,集熱器面積,集熱器の特性, 集熱器面日射量の最大値,集熱設定温度,集熱時平均

Heat transfer coefficient of heating coil, UA _{hex}									
Upper control limit of hot water flow rate of heating coil, $F_{hwwymax}$ \circ							0		
	Upper	control l	imit of ai	r flow rat	e of heati	ing coil, I	F _{hwa, v,max}		0
	Upper contro	ol limit o	f flow rate	e of solar	collector	$F_{c,v,max}$			
Volume of thermal energy storage tank, V _{oot}									
		Solar co	ollector a	rea, A _{col}		0			
	Duration of solar heat collection	in the da	y, $t_{Ve}-t_s$	0					
	Correction fac	tor, R_{vw}		0	0		0	0	0
	Heating load			°*3	°*3		° ^{*1}	° ^{*1}	°*1
D	Depth of thermal energy storage tank	0							
esi.	Characteristics of solar collector	0	0	0		0			
gn	Solar radiation on solar collector	° ^{*4}	° ^{*2}	°*3		° ^{*1}			
COL	Set temperature of collector outlet	0	0	0	0	0			
$\vec{\mathbf{E}}$: Initial dimensionless depth of mixed region R_{m0} \circ									
ion	Mean ambient temp. during heat collection	0	0	0		0			
s	Ξ Inlet hot water temp. (=set temp. collector outlet)							0	0
	B. Outlet hot water temp. (=room temp 5)	0	0	0	0	0		0	
Inlet air temp.(=room temp.)							0		0
	$\stackrel{\mbox{\footnotesize emp}}{=}$ Outlet air temp. (=inlet hot water temp 10)						0		
	Equations used to calculate	(25)	(18)	(17) (26)	(20) (28)	(19)	(27)	(28)	(24) (26) (29)

Table 6 Summary of simplified design method for solar heating system 表 6 太陽熱暖房システムの簡易設計法(変流量水集熱方式)

o: needed design condition

Note *1: maximum value (W/m²), *2: instantaneous value (W/m²), *3: integrated value during heat collection (J), *4: mean during heat collection (W/m²)

外気温度等の設計条件から式(19)により求める。

⑥ 加熱コイルの風量および温水流量の制御上限値は、それぞれのコイル出入口温度と最大暖房負荷から、式(27)と式(28)により求め、加熱コイルの熱通過係数は、加熱コイルの流量と温水流量、規模補正係数、最大暖房負荷、加熱コイルの入口空気温度および温水入口温度から式(24)、式(26)および式(29)を用いて求めることができる。

6. まとめ

水集熱式太陽熱暖房システムについて, 合理的な最適設 計のための簡易設計法について検討を行った。

最初に蓄熱のシミュレーションを行い,その結果から集 熱設定温度に応じた限界の蓄熱量をほぼ蓄熱できる最小の 蓄熱槽容量を最適蓄熱槽容量であると定義し,理論的検討 からこの最適蓄熱槽容量を近似的に求める方法を示し,設 計条件と暖房負荷に見合ったシステムの蓄熱容量から,集 熱器面積と蓄熱槽容量を求めるための関係式を示した。

次に、この関係式を利用した簡易設計法を提案し、これ により決定した設計値を用いて、蓄熱・放熱の繰返し運転 のシミュレーションを行い、本簡易設計法の適用範囲につ いて検討を行った。その結果、設計条件を説明変数とした 回帰式をシステムの蓄熱容量の補正式として使用すること で、現実的な設計条件の範囲内では十分適切な設計ができ ることを確認した。

記号

A_{col}	: 集熱器集熱面面積	[m ²]
A_{st}	: 蓄熱槽の断面積	[m ²]
с	: 比熱(定圧比熱)	[J/(kg K)]
$F_{c,v}$: 集熱流量	[m ³ /s]
$F_{c,v,lim}$: 集熱流量の制御下限値または上限値	[m ³ /s]
$F_{c,v,max}$: 集熱流量の上限値	[m ³ /s]
$F_{hw,a}$:加熱コイルの風量	[m ³ /s]
$F_{hw,w}$:加熱コイルの温水流量	[m ³ /s]
F'	: 集熱器効率因子	[-]
H_{st}	:蓄熱槽の高さ	[m]
I_{col}	: 集熱器に入射する日射量	$[W/m^2]$
I _{col,ave}	: 集熱器に入射する平均日射量	$[W/m^2]$
K_{col}	: 集熱器の熱損失係数	$[W/(m^2 K)]$
t_s, t_e	: 集熱開始時刻, 終了時刻	[s]
q_{col}	: 集熱器での集熱量	[W]
q_{ex}	: 加熱コイルでの交換熱量	[W]
q_h	: 暖房負荷	[W]
Q_c	:一日の蓄熱量	[1]
Q_s	: 蓄熱容量	[1]
Q_h	: 日積算暖房負荷	[J]
R_{sol}	: 日積算暖房負荷に占める太陽熱暖房シス	ペテム
	からの積算放熱量の割合(充足率)	[-]
UA_{hex}	: 加熱コイルの熱通過係数	[W/K]
V_{opt}	: 最適蓄熱槽容量	[m ³]
V_{st}	: 蓄熱槽容量	[m ³]
З	: 加熱コイルの熱通過有効度	[-]
η	: 集熱器効率	[-]
θ_{amb}	: 集熱器周囲温度(集熱時)(外気温度)	[°C]
$\theta_{col,in}$: 集熱器入口温度	[°C]
$\theta_{\textit{col},\textit{v,set}}$:集熱器出口設定温度	[°C]

$\theta_{col,v,o}$: 集熱器出口温度	[°C]
$\theta_{hww,o}$: 加熱コイルの出口温水温度	[°C]
$\theta_{hww,i}$: 加熱コイルの入口温水温度	[°C]
$\theta_{hwa,i}$: 加熱コイルの入口空気温度	[°C]
$\theta_{hwa,o}$: 加熱コイルの出口空気温度	[°C]
θ_o	: 蓄熱槽の初期温度	[°C]
ρ	: 密度	[kg/m ³]
$(\tau \alpha)_e$:集熱器の日射吸収率	[-]

添え字 a: 空気, w: 水

参考文献

- Duffie A.J. and Beckman W.A : Solar engineering of thermal processes, John Willey &Sons, pp.655-672, 2006
- S.A. Kalogirou : Optimization of solar systems using artificial neural-networks and genetic algorithms, Applied Energy, 77(4), pp. 383-405, 2004
- G.N. Kulkarni, S.B. Kedare, S. Bandyopadhyay : Determination of design space and optimization of solar water heating systems, Solar Energy, 81, pp. 958-968, 2007
- 北野博亮,相良和伸:空気集熱式太陽熱暖房システムの最適蓄 熱槽容量に関する理論的検討,日本建築学会計画系論文集,第 532 号,pp.29-35,2000.6
- 北野博亮,相良和伸:空気集熱式太陽熱暖房システムの簡易設 計法に関する研究,日本建築学会環境系論文集,第 582 号, pp.45-52,2004.8
- 6) 北野博亮,相良和伸:シミュレーションによる空気集熱式太陽 熱暖房システムの簡易設計法の検証,太陽エネルギー学会誌, Vol.31, No.4, pp.37-47, 2005.7
- 7) 松尾陽,他17名,日本太陽エネルギー学会,新太陽エネルギー ハンドブック,初版,pp.1~42,141,142,2000
- 8) 北野博亮,岩田剛,相良和伸:温度成層型蓄熱槽の変動入力条件に対応した槽内混合モデルに関する研究,空気調和・衛生工学会論文集,No.96, pp.31-40, 2005.1
- 9) TRNSYS The Transient System Simulation Program Reference manual, Vol.1, pp.(4.7.1-1)-(4.7.1-3), 1996
- 10) 田中俊六, 鈴木定彦, 黒木恵, 和気隆: 屋根一体形太陽熱・大 気放射冷却装置に関する研究 その4 各種空気集熱器の実験, 日本建築学会大会学術講演梗概集, pp.569~570, 1982
- 11) 嘉納秀明:システムの最適理論と最適化,コロナ社,1987

注

初期混合域無次元深さ⁸⁾は次の実験式により求まる値であり,

入口アルキメデス数 Arin, 槽水深等に依存する。

$$R_{m0} = 0.8 A r_{in}^{-0.5} d_0 / L$$
$$A r_{in} = \sigma d_0 \frac{\Delta \rho}{1}$$

$$Ar_{in} = g d_0 \frac{1}{\rho_{w,st,0}} \frac{1}{u_{st,in}}^2$$

ここで, Ar_{in}: 入口アルキメデス数, d₀: 流入口直径[m], L: 水 深[m], g: 重力加速度[m/s²], u_{stin}: 流入流速[m/s], *d*_ρ: 流入水と槽 内水の密度差[kg/m³], ρ_{wst0}: 初期槽内水密度[kg/m³]である。