長州産業の品質管理とBPD

長州産業株式会社 企画開発部 山崎 敏晴

2014年6月4日

紹介のアウトライン

1. まずは知らない方も多いと思いますので・・・・・・ 「長州産業の紹介」

を、簡単にさせていただきます。

2. その中で弊社の変遷を紹介し、 「品質管理への弊社の姿勢」

を、ご理解いただきます。

3. 最後に本日のテーマであるジャンクションボックスについて

CIC Confidential

Technology Revolution CIC

1. 会社概要

CIC 長州産業株式会社

設立

1980年10月

資本金

4億1,000万円

代表者

取締役社長 岡本 要

従業員数

650名

事業内容

- 太陽光発電システム、環境機器の製造・販売
- 有機ELデバイス製造装置、半導体・液晶パネル製造装置、 メカトロ機器の設計・加工・組立・据付・メンテナンスまでの一貫業務
- 半導体製造装置のエンジニアリング業務並びに

関連装置の洗浄再生業務

● 半導体製造装置関連部品の超精密板金・機械加工

2. 開発・製造・営業拠点

営業拠点

■ 本社 ■ 東京支店 ■ 大阪支店 ■ 北海道営業所 ■ 仙台営業所

○ 本社·工場

《半導体関連装置部品の洗浄・再生》

○ 研究開発・工場

洗浄·再生工場

広島工場

《半導体関連装置部品の洗浄・再生》

○ 有機EL装置

■ 長野営業所

■ 名古屋営業所

高松営業所

Inclogy Revolution CIC

CIC Confidential

3. 会社沿革と事業内容

九州工場

当社は3つの主力事業を有しています。

■ 太陽光発電

1998年から販売を開始し、現在では主軸事業となってい ます。単結晶シリコンセル(太陽電池)の生産から太陽電 池モジュールの組み立てまでを一貫して行うことで、品質 を追及したブランド展開を進めています。

2 超高真空技術による、半導体 液晶パネル、有機EL関連の

1985年より最先端技術の習得をし、装置の設計・製作・ 組立・据付・メンテナンスまでをトータルで行える体制を築

图 洗浄·再生事業

半導体や液晶パネルの製造現場において、装置内の部品 に付着する金属などの微小な汚染物質を取り除き、部品の

長州産業株式会社

1980年:設立

翌年 太陽熱システム リリース

1984年:NEC山口向け アネルバ社真空 装置 エンジニアリングサービス開 始

1993年:広島工場 洗浄サービス開始

1998年 :太陽光発電システム販売開始

2007年:10世代ガラスサイズ用液晶製造 装置向け 工場稼動

2009年:太陽光発電モジュールライン稼動

クラスター式業業業 **2013年:一貫生産ライン稼動開始**

4. 真空メカトロ装置 事業

ています。

CIC 長州産業株式会社

最先端のディスプレイや照明として盛んに研究され ている有機EL。国家プロジェクト「次世代大型有機 ELディスプレイ基板技術の開発(グリーンITプロ ジェクト)」に参画しています。

部に付着した生成物の洗浄除去・再生処理が欠か 世ません。長州産業の洗浄事業は、化学洗浄や超音 波洗浄、プラスト処理だけでなく、プラズマによる表 面改質で部品の洗浄サイクルを伸ばす処理を行っ

超高真空装置向けチャンパー(容器)溶接

10世代ガラス基板用装置も製造可能な大

Technology Revolution CIC

CIC Confidential

5. 設計・製作~アフタ

長州産業株式会社

CIC FULL SUPPORT SYSTEM

研究開発型企業 CICの頭脳を新工場に集約 All the brains of CIC, R&D-driven company, are integrated in new factory

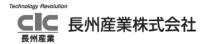
機械の設置から稼働まで、責任を持って担当 Responsibility for the installation and the start of the operation.

設計・製造技術をバックに迅速・確実なメンテナンス

[紀立·検査]

000レベルのクリーン環境で組立・検査

オーバーホール・洗浄で機械・装置を再生



超高真空技術に不可欠な真空ポンプオーバーホール業務

6. 品質に対する基本姿勢

品質に対する基本姿勢

- 1. 部材選定では
 - (1) 市場実績のあるメーカーを選定する。
 - (2) 部材の基本性能を重視する。
 - (3) 量産時の品質体制を重視する。
- 2. 工程では
 - (1) 安定した製造ができるラインを構築する。
 - (2) ラインの稼動は習熟したリーダーにより、教育されたオペレーターで行う。
 - (3) 汎用ラインで不十分な場合は、社内で設計し、制御性の良いラインを構築する。
 - (4) ラインの維持管理は社内の技術を活用する。(立ち上げ、サービスなど)
 - (5) 部材の品質管理を徹底する。
- 3. 施工・アフターサービス
 - (1) 施工はIDを取得した施工店に限定し、安心できる施工を実施する。
 - (2) 稼動状況を把握し、適切なアフターサービスを行う。
- 4. 長期信頼性
 - (1) 加速試験は規格の数倍を実施する。
 - (2) 個々の材料の試験などをベースに科学的な根拠を明確にする。
 - (3) 市場などの情報をフィードバックし、適時見直しを行い、最適な試験を行う。
 - (4) 部材メーカーのデータに加え、社内で検証できる試験は全て実施する。

CIC Confidential

Technology Revolution CIC

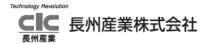
7. ジャンクションボックスへの要求

Technology Revolution **CIC**長州産業株式会社

Junction-Boxに求められる機能は

- ① 電極取り出し機能
- ② モジュールに対する保護回路としてモジュールの安全を担保

要求特性として


モジュールの長期保証に耐えうる設計寿命

→従来はDIN V VDE V0126-5: 2008 規格 だったが 現在はEN 50548: 2011 規格に基づく 認証品を使用。

Reverse Current test (Gr-I) 追加

*J-BOXに対し逆電流を流した時(ダイオードはショート状態)に発熱でチーズクロスが燃えないかを試験。

8. BPDの試験

(一例として)

BPDを75±5℃の雰囲気で、

- ①定格電流で1時間経過後の飽和温度と電圧測定。
- ②定格電流の1.25倍の電流を1時間通電し、ダイオードが異常なく動作することを確認。
- ③Tj(max)を超えないで、耐電圧以下であることを確認。
- →試験では更に高温で、更に高い電流で実施している。 またポッティング材も含めたボックスの温度試験も実施。
- →メーカー側の試験のみでなく、使用するユーザーも同等以上の試験 を実施。

CIC Confidential

Technology Revolution CIC

9. ジャンクションボックスへの要求

Technology Pevolution **CIC**長州産業株式会社

要求される性能と今後の改善の方向

1. 優れた放熱構造

適切なBPDを、放熱構造の良いボックスに搭載し、内部の温度上昇を抑える。

- 接合部の高信頼性構造化 長期間の温度変化(高温⇔低温)での膨張・収縮で発生する接合部 の応力を緩和する機構構造。
- 3. 機械化による品質の安定 接合部の機械化で製品品質を安定させる。