

PV System Kusatsu, Shiga, Japan Azimuth: due south Bita angle: 15.30 Longitude : 135°57'E Latitude : 34°58'N				RITSUMEIKAN	
	sc-Si	mc-Si	a-Si	a-Si/µc-Si (tandem)	a-SI/a-SIGe /a-SiGe (3 stack)
Capacity [W]	5160	5076	1980	1125	1024
Number of module	40	36	66	30	16
Area [m ²]	39	39	29	12	13
Efficiency [%]	13.4	13.0	6.8*	9.3*	5.9
First modules were installed in 1998. *capacity/area (Data from supplier was not available)					
RITSUMEIKAN Parameters for PV and environment					
PR(Performance Ratio) Index for PV output Output Energy (W) PR (%) =					

If actual output is equal to rated capacity, then PR is 100 %.

Irr

Irradiance

 $\rm T_{mod}$ of back side of module is measured by TC.

Parameter for spectrum

APE (eV)

Short summary (1)

①立命館では1998年から結晶シリコン系、薄膜シリコン系の PVシステムの計測を行っている。

②滋賀県草津市の太陽光スペクトルは9割程度が基準太陽 光に比べブルーリッチ。

③滋賀県草津市では、標準状態に対応する温度・スペクトル を満たす屋外環境はほぼ出現しない(<1%)。

How to calculate output energy? RITSUMEIKAN

Energy estimation by contour maps

RITSUMEIKAN

Short summary (2)

①PRマップで、各種太陽電池のスペクトル・温度依存性が一目でわかる。

②結晶シリコン系は主に温度、薄膜シリコン系は主にスペクトルに 影響を受ける。

③PRマップの時間推移を見れば、劣化度合いがわかる。 →劣化メカニズムがわかる?

④PRマップがわかり(測定でき)、Irrマップがあれば(予想?過去のデータ?)、エネルギーマップが得られる。
→発電量予測(と検証)が可能

⑤PRマップの軸がAPEとT_{mod}なので、一般的なデータではない。 →公的データ(気象台データ)とリンクしたい→次のトピック

RITSUMEIKAN

✓ 立命館@草津のPVシステム,屋外環境
立命館データの基礎,経緯

2. コンターマップ(発電性能vsスペクトルvs温度) PV種ごとの発電特徴が一目でわかる

3. 公的データを用いた発電量予測 専門的な環境データを用いずに発電量推定(?)

4. まとめ

Short summary (3)

① 公開されている気象データとAPEとT_{mod}の相関を解析した。 (APEとAM・GTI、T_{mod}とT_{amb}・GTIの相関を求めた。)

② ①の関係から、日本各地のIrrマップを作成した。

③ ②に草津サイトのPRマップを掛けることで、日本各地のエネル ギーを(一応)得た。

検討中の課題

各地での検証(各地で信頼の置けるデータが必要) • APE(AM-GTI)とT_{mod}(T_{amb}-GTI)の相関がどこでも同じか。 • PRマップがどこでも同一か(PRマップはUniversalか)。 PRマップの環境範囲の拡張(滋賀では氷点下や高温のデータはほぼない)。 PRマップの劣化を考慮。

須!)やシミュレーションによる理論付けが必要