

独立行政法人產業技術総合研究所

ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

太陽光発電工学研究センタ

独立行政法人產業技術総合研究所

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

AIST

Reference	Title
IEC 60891 ed2.0	Photovoltaic devices - Procedures for temperature and irradiance corrections to measured I-V characteristics
IEC 60904-1 ed2.0	Photovoltaic devices - Part 1: Measurement of photovoltaic current- voltage characteristics
IEC 60904-2 ed2.0	Photovoltaic devices - Part 2: Requirements for reference solar devices
IEC 60904-3 ed2.0	Photovoltaic devices - Part 3: Measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data
IEC 60904-4 ed1.0	Photovoltaic devices - Part 4: Reference solar devices - Procedures for establishing calibration traceability
IEC 60904-5 ed2.0	Photovoltaic devices - Part 5: Determination of the equivalent cell temperature (ECT) of photovoltaic (PV) devices by the open-circuit voltage method
IEC 60904-7 ed3.0	Photovoltaic devices – Part 7: Computation of the spectral mismatch correction for measurements of photovoltaic devices
IEC 60904-8 ed2.0	Photovoltaic devices - Part 8: Weasurement of spectral response of a photovoltaic (PV) device
IEC 60904-9 ed2.0	Photovoltaic devices - Part 9: Solar simulator performance requirements
IEC 60904-10 ed2.0	Photovoltaic devices - Part 10: Methods of linearity measurement
IEC 61853-1 ed1.0	Photovoltaic (PV) module performance testing and energy rating - Part 1: Irradiance and temperature performance measurements and power rating
IEC 61215 ed2.0	Crystalline silicon terrestrial photovoltaic (PV) modules – Design qualification and type approval
IEC 61730-1 ed1.0	Photovoltaic (PV) module safety qualification - Part 1: Requirements for construction
IEC 61730-2 ed1.0	Photovoltaic (PV) module safety qualification - Part 2: Requirements for testing

60904-2 reference devices	JIS C8913
60904-3 STC	JIS C8919
60904-8 SR	JIS C8934
61853 Energy Rating	JIS C8940
60904-1-1 MJ I-V	JIS C8943
60904-8-1 MJ SR	JIS C8946
, etc.	TS C0051
	, etc.

規格番号	規格名称	制定年月日	<u>最新改止年月日</u>
JISC8904-2	太陽電池デバイス-第2部:基準太陽電池デバイスに対する要求 事項	2011/1/20	
JISC8904-3	太陽電池デバイス-第3部:基準太陽光の分光放射照度分布によ る太陽電池測定原則	2011/1/20	
JISC8904-7	太陽電池デバイス-第7部:太陽電池測定でのスペクトルミスマッ チ補正の計算方法	2011/1/20	
JISC8910	一次基準太陽電池セル	2001/12/20	2005/9/20
JISC8912	結晶系太陽電池測定用ソーラシミュレータ	1989/11/1	2011/3/22
JISC8913	結晶系太陽電池セル出力測定方法	1989/11/1	2005/9/20
JISC8914	結晶系太陽電池モジュール出力測定方法	1989/11/1	2005/9/20
JISC8915	結晶系太陽電池分光感度特性測定方法	1989/11/1	2005/9/20
JISC8916	結晶系太陽電池セル・モジュールの出力電圧・出力電流の温度係 数測定方法	1989/11/1	2005/9/20
JISC8917	結晶系太陽電池モジュールの環境試験方法及び耐久性試験方法	1989/11/1	2005/9/20
JISC8918	結晶系太陽電池モジュール	1989/11/1	2005/9/20
JISC8919	結晶系太陽電池セル・モジュール屋外出力測定方法	1995/9/1	2005/9/20
JISC8920	開放電圧による結晶系太陽電池の等価セル温度測定方法	2005/9/20	
JISC8933	アモルファス太陽電池測定用ソーラシミュレータ	1995/9/1	2011/3/22
JISC8934	アモルファス太陽電池セル出力測定方法	1995/9/1	2005/9/20
JISC8935	アモルファス太陽電池モジュール出力測定方法	1995/9/1	2005/9/20
JISC8936	アモルファス太陽電池分光感度特性測定方法	1995/9/1	2005/9/20
JISC8937	アモルファス太陽電池出力電圧・出力電流の温度係数測定方法	1995/9/1	2005/9/20
JISC8938	アモルファス太陽電池モジュールの環境試験方法及び耐久性試験 方法	1995/11/1	2005/9/20
JISC8939	アモルファス太陽電池モジュール	1995/11/1	2005/9/20
JISC8940	アモルファス太陽電池セル・モジュール屋外出力測定方法	1995/11/1	2005/9/20
JISC8942	多接合太陽電池測定用ソーラシミュレータ	2009/3/20	
JISC8943	多接合太陽電池セル・モジュール屋内出力測定方法(基準要素セ ル法)	2009/3/20	
JISC8944	多接合太陽電池分光感度特性測定方法	2009/3/20	
JISC8945	多接合太陽電池出力電圧・出力電流の温度係数測定方法	2009/3/20	
JISC8946	多接合太陽電池セル・モシュール屋外出力測定方法	2009/3/20	

各種新型太陽電池の性能評価技術

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

High-efficiency c-Si solar cells: under discussion JIS C8913 **I-V sweep speed and direction JIS C8919 JIS C8934** Response time is dependent on both the **PV C8940 JIS C8943** device and measurement equipment. **JIS C8946 TS C0051** 1.12 1.15 (1.1 (1.08) (1.08) lsc→Voc module A Tester 1 Isc to Voc Tester 1 Voc to Isc Voc→lsc module A 1.10 Tester 2 Isc to Voc Tester 2 Voc to Isc lsc→Voc module B **Iormalized Pmax** 1.05 Voc→lsc module B $\overline{\mathcal{X}}$ 1.00 0.95 0.94 0.90 10 1000 10 100 1000 100 Sweep time(msec) Sweep time (ms) Effect of sweep speed and direction on the I-V characteristics of high-efficiency c-Si solar cell (HIT structure). NATIONAL INSTITUTE OF _{独立行政法人}產業技術総合研究所 ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST) 太陽光発電工学 AIST c-Si bare cells: distribution of electric field in the cell surface Sometimes leads to inappropriate Device 4 terminal connection "good" 4 terminal connection busbars probe bar probe pins c-Si bare cell busbar1 busbar2 busbar3 Sample stage with multiple contact probes for measuring the I-V curve of c-Si bare cells.

太陽光発電工学研究センター

独立行政法人 **產業技術総合研究所**

ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

NATIONAL INSTITUTE OF

AIST

c-Si bare cells:

🖘 AIST

distribution of electric field in the cell surface

独立行政法人產業技術総合研究所

ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

太陽光発電工学研究センター

🗊 AIST **DSC: Spectral response** • Very slow response time than other PV devices • Response time is dependent on the wavelength Bias light is necessary for accurate characterization Chopper frequency of 1 - 5 Hz or slower (typ. ~1 Hz) sca | e) 8 .0 Quantum efficiency (relative scale) 1.1 - 5.1 Hz DC 0.8 1.1 Hz (relative s .0 9 (b) (a) 17 Hz 0.6 8.5 Hz 3.4Hz eff (ciency 0. 2 0.4 1.7 Hz 0.2 Quantum 0.0 AC, bias light: 100 mW/cm² AC, bias light: 0 mW/cm² 0.0 600 800 900 300 400 800 300 400 500 700 500 600 700 900 Wavelength (nm) Wavelength (nm) Spectral response measurement of DSC. NATIONAL INSTITUTE OF 独立行政法人產業技術総合研究所 ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST) 太陽光発電工 AIST DSC: I-V Curve (slow devices) Measurement from both directions (I_{sc} to V_{oc} , V_{oc} to I_{sc}) Confirmation of P_{max} at a fixed bias voltage 2.2 B I_{sc}-Voc 2 2.0 Current (mA) 1.8 в Current (mA)

1.8

(b)

(a)

独立行政法人產業技術総合研究所

sweep time 42 sec.

0

0

OPV: very wide variation of SR

🕏 AIST

• The basic features are similar to other thin film PV devices.

• The spectral response (SR) of OPV sometimes shows different features than other PV devices, due to its **very wide variation**

Example of the relative spectral responses (A/W) of an a-Si tandem and an OPV tandem devices.

独立行政法人產業技術総合研究所

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

🖾 AIST

Irradiance and temperature dependence

照度特性

・新型太陽電池を含め、線形補間法で正確に補正可能であることを確認。

・照度特性:直列抵抗Rsの影響が支配的である

独立行政法人產業技術総合研究所

ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

太陽光発

研究センタ

温度特性

・新型太陽電池を含め、線形補間法で正確に補正可能であることを確認。

・温度特性:太陽電池の材料・構造が強く影響

独立行政法人產業技術総合研究所

ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

Spectral irradiance measurement

The possible technical issues for the **spectroradiometers** are;

• Linearity according to the irradiance and exposure time

- (The irradiance of SS is 10 100 times higher than the standard lamps)
- Angular dependence of the input optics
- Stability of the optics

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

太陽光発電工

AIST

🗊 AIST

Spectrally adjustable solar simulators

Spectrally adjustable solar simulators

• Both the high fidelity to the reference solar spectrum and spectral adjustability is necessary for the performance characterization of

multi-junction PV devices

• Several PV testing labs. and institutes are developing and installing spectrally adjustable SS's

独立行政法人 **產業技術総合研究所**

大陽光発電工学研究センタ

独立行政法人產業技術総合研究所

ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)