

PVに要求される耐風性能 ①希に起こる暴風(再現期間50年程度) に対して、損傷は限定的、破壊しない

②極めて希に起こる暴風 (再現期間500年程度,荷重は①の約1.6倍) に対して,飛散させない 特に,屋上設置型では重要な性能 地上設置型では条件の緩和は可能 (飛散のインパクトが小さい場合) 基本的には建築物外装材と同じ

本日の講演内容

■太陽光発電システムに要求される耐風性能
■太陽光発電システムの風荷重評価方法概説
■太陽光発電システムの風力係数評価:留意点
■「太陽光+風力」ハイブリッド発電システム

再現期間と安全性 耐用年数(供用年数)20年のPVを再現期間 50年の風速で設計するのは安全すぎる? *No:* 供用期間中に1度も設計風速を超えない確率 $p = \left(1 - \frac{1}{T}\right)^{N}$ *T*:再現期間(年) *N*:供用年数 *T*=50, *N*=20 のとき *p*=0.67

風工学において望ましい太陽光発電システムンの位置づけ

 低層・小規模構造物の風洞実験
平均風速のプロファイル(べき指数α) 影響小さい → 相似条件の緩和
乱れの強さ → 影響大きい
一様流での実験は現象を正しく反映しない
気流と模型の幾何学的縮尺率の不一致 乱れのスケールに基づく 気流の縮尺率 1/200~1/500程度 模型の縮尺率 1/50程度
一致させることは必要か? Not **乱れのスケールに対する条件** H.W. Tieleman et al. (1998), JWEIA, Vol.74-76 (1) $L_{x,m} > 0.1L_x$ かつ $L_{x,m} > 2L_B$ $L_{x,m}$: 風洞気流の乱れのスケール $L_x : ターゲットとする自然風の乱れのスケール$ L_B : 模型の代表寸法 (2) $S = \frac{n_s S_u(n_s)}{\sigma_u^2} \left(\frac{\sigma_u}{U}\right) \times 10^6 > 300$, $n_s = \frac{10U}{L_B}$ Small-scale spectral density parameter

PVCに作用する風力の測定方法(1)ジェンクジェンクジェンクシェンクシェンクケェンク</t

PVに作用する風力の測定方法(2)

多点風圧測定(上下面同時)(東京工芸大学提供)。

3000

