εςφες

日本太陽エネルギー学会 太陽光発電部会 第4 回セミナー「太陽光発電システムの運用と保守」

PID についての総説

2013/06/03

エスペック株式会社 棚橋 紀悟

t-tanahashi@espec.co.jp

1

トピック:PID耐性

Fraunhofer CSP presents results of potential induced degradation (PID)

2012/06/11

🖉 Fraunhofer

In the test the temperature $(+50 \circ C)$ and the relative humidity (50 %) was increased thus the test duration was decreased to 48 h.

<u>A negative voltage bias of -1000 V</u> was applied. The modules were <u>covered with a thin</u> <u>aluminum foil</u> on the glass side to generate a homogeneous electric filed.

2012/6/11 ESDEC

50 °C / 50% RH, -1,000 V 48 hr, Aluminum Foil

Tested Module's Manufactures (in alphabetic order)

- 1. Canadian Solar Inc.,
- 2. Kyocera Solar (2012/7/11),
- 3. LG Electronics (2012/8/1),
- 4. LUXOR Solar GmbH,
- 5. Q-Cells SE (2012/6/7),
- 6. REC Solar,
- 7. SCHOTT Solar AG,
- 8. S-Energy,
- 9. Sharp Solar (2012/7/20),
- 10. Solarwatt AG,
- 11. Suntech Power,
- 12. Trinasolar,
- 13. Yingli Green Energy Holding Co., Ltd.

Fraunhofer CSP プレスリリースより引用+演者追記 2

Potential Induced Degradation <c-Si > Pingel et al. (SOLON), 2010 IEEE-PVSC Berghold et al. (SOLON), 2010 EU-PVSEC

Figure 3 (online colour at: www.pss-rapid.com) a) Solar cell cross section: Schematic of the proposed charge double layer leading to the shunt paths in the p–n junction. b) PC1D band diagrams for a solar cell without (dotted curve) and with (dashed curve) negative surface charge.

J. Bauer et al.," On the mechanism of potential-induced degradation in crystalline silicon solar cells", Phys. Status Solidi RRL 6, No. 8, 331–333 (2012)

PID: Procedures (Proposed STD & Recent Press Releases)

Institution / Manufacture / C-Body / -		Temp. (º C)	Humid. (%)	Voltage (V)	Dura- tion (h)	Cover
German Multi-Inst./Firm	2011/9/5	25		-1,000	168	AI / W
Schott	2011/9/5	25		-1,000	168	AI
PI-Berlin	2011/9/6	85	85	Max S.V.	48	
Fraunhofer-CSP	2012/ 6/ 11	50	50	-1,000	48	AI
Jinko (TuV-SUD / CSA)	2012/8/6	65	85	-1,000		
Suniva (PV Evolution)	2012/ 8/ 14	85	85	±1,000	600	
Yingli (Intertek)	2012/ 8/ 21	85	85	1,000	96	
Panasonic (Chemitox)	2012/ 9/ 19	60	85	1,000	96	
LDK (TuV-R / PV-Lab.)	2012/ 9/ 24	25		1,000	168	AI / W
NREL (IEC)		60	85	Max S.V.	96	

Max S. V. = Maximum System Voltage (given by label)

13

εςφες

Module Model

ESPEC

