An Idea to Judge Maximum Power Output of PV Module at STC Based on Outdoor I-V Measurement Data by Applying Bayesian Inference

ベイズ推測に依拠した屋外での電流 – 電圧特性測定による太陽 電池モジュールの基準状態の最大出力を判定する方法(着想)

> Kazuhiko KATO 加藤 和彦

Abstract

This paper gives an idea to judge maximum power output of photovoltaic (PV) module at standard test condition (STC) based on outdoor I-V characteristic data by applying Bayesian inference. Numerous I-V data of twelve PV modules which had a variety of reduction rate in maximum power output at STC were measured outdoors. Then for each of the twelve PV modules, every measurement data was used to estimate its maximum power output at STC according to the manner that the author already proposed, probability distribution of which was obtained. This probability distribution plays a role of likelihood for Bayesian inference. Epidemiological verification with the measurement data suggested that the idea might be one of practical ways to judge outdoors power performance of PV modules.

Keywords: PV module, I-V characteristics, Outdoor measurement, Standard Test Condition, Bayesian inference **キーワード**:太陽電池モジュール,電流-電圧特性,屋外測定,基準状態,ベイズ推定

1.はじめに(背景,動機,主題)

太陽光発電設備 (PVS)の保守の根本は「安全の維持」であ るべきである.しかし,私的利益の獲得を合法化した「電気事 業者による再生可能エネルギー電気の調達に関する特別措 置法」の施行以降,わが国の国民のPVSの導入動機は社会規 範意識から市場規範意識へと転回した,と私は考えている.こ の結果,PVS の保守は「発電量の維持」すなわち「私的利益の 維持」が最優先の目的となり,そのような保守サービスを提供 する事業体や技術製品群(赤外線カメラ,EL装置,断線検査, インピーダンス測定,遠隔監視システム等)が現出し始めてい る.これらは「太陽電池モジュール(PV モジュール)に何らかの 異常が発生している可能性」を知る手段とはなり得るが,PV モ ジュールの発電性能に関する定量的な直接的判断をするもの ではない.

他方,商取引においては,ほとんどのPVモジュール販売事 業者は,その基準状態(STC: Standard Test Condition)におけ る最大出力の低下の下限を長期に亘って保証するサービスを 提供している.ただし,どのPVモジュール販売事業者も,それ を屋外で判定する方法は提供していない. このように「屋外において PV モジュールの発電性能を判定 する」ことについては、PVS の保守業者が提供するサービスと PV モジュール販売業者が提供する発電性能長期保証サービ スとの間に大きな隔たりがある.この状況を看過していては、い っになっても PVS の保守の「根本への回帰」が実現しない.い ち早く PV モジュールの基準状態における最大出力を屋外で 判定する方法の指針が与えられなければならない.

この問題を解決するための動きがないわけではない. たとえ ば、古くは JIS C 8919-1995「結晶系太陽電池セル・モジュール 屋外出力測定方法」⁽¹⁾があり、市販の電流-電圧(I-V)特性測 定機器にはこの規格にもとづいた基準状態への換算機能を備 えたものもある. しかし、この規格の本来の対象は不具合のな い正常な PV モジュールであり、不具合により発電性能が変化 した PV モジュールを測定した場合の基準状態における発電 性能の換算精度については何ら言及していない. また、この規 格を実践するためには、測定対象の PV モジュールを代表す る四つの補正係数(α:短絡電流の温度補正係数, β:開放電

国立研究開発法人産業技術総合研究所 太陽光発電研究センター システムチーム 上級主任研究員(〒305-8568 茨城県つくば市 梅園 1-1-1 中央第 2) e-mail: kazuhiko.kato@aist.go.jp (原稿受付: 2017 年 4 月 14 日, 受理日: 2017 年 6 月 26 日) 圧の温度補正係数, Rs: 直列抵抗, K: 曲線補正因子)を必須と するが, PV モジュール販売事業者は必ずしもこの補正係数を 公表してはいない. さらには, 不具合によって発電性能が変化 した PV モジュールが「不具合がない時の補正係数と同じ値を 保持している」という保証はどこにもない. したがって, この規格 による屋外測定による発電性能判定はまったく頼りにならない.

また,2016年12月には,太陽光発電技術研究組合が屋外 での I-V 特性測定に関するガイドライン⁽²⁾を公表している.しか し,これは JIS C 8953「結晶系太陽電池アレイ出力のオンサイト 測定方法」の代替を意識しているため,対象は PV モジュール ストリングまででありかつ内容も「目安」の域にとどまっている.

この研究の主題は「PV モジュールの基準状態における最大 出力を『屋外で』かつ『できるだけ簡便に』測定して判定する方 法を確立する」ことである.

理想は,

(イ)測定条件に制約(日射強度条件の狭さ・太陽-PV モジ ュール間位置関係の狭さ・モジュール温度条件の狭さ,な ど)がなく、かつ、

(ロ)測定および基準状態換算にともなう誤差がなく、かつ、(ハ)一度の測定機会で判定ができること

であろう. 筆者のみるところ, この理想に向かっているものの一つに菱川らの研究⁽³⁾がある.

しかし,筆者は次のように考える-(ロ)について,測定に誤 差が生じることは不可避であり,かつ測定機器が増えるほどに 誤差は大きくなるのも必然である.また,基準状態への換算に ついても誤差から免れることはできない.他方,当事者が許容 できる程度に(イ)が実現できるならば,(ハ)はある程度の譲歩 の余地がある(複数の測定機会を許容してもらえる)だろう.ま た,出力が低下した PV モジュールではその原因となる物理的 事象が安定的に存在している(再現性がある)とは限らないこと からも,一度の測定機会にもとづく判定の「誤判定」のリスクを 避けるためにも複数の測定機会とするのが現実的である.

そこで、筆者は、測定と基準状態換算にともなう誤差は不可 避であることを受け入れたうえで、複数の測定機会が許容され ることを前提に、できるだけ幅広い日射強度条件と PV モジュ ール温度条件のもとでの I-V 特性測定から、対象 PV モジュー ルの基準状態における最大出力を「ある確からしさ」で判定す る方法を考案することに研究の主眼を置き、ベイズ推定 (Bayesian inference)の考え方に依拠した確率論的な判定方法 の仮説を立てた.

この論文では、この仮説を提示し、その真偽の検証(証明) の途中経過を報告する.

2.ベイズ推定に依拠した判定方法の仮説

筆者が提案するベイズ推定に依拠した判定方法の仮説を, 以下に例示する.

ここに外観上は区別不能な三枚のPVモジュール(X, Y, Z)

Journal of JSES

	(G	$\cap T_m) \mathcal{O} \mathcal{E}$	き	(G'∩T _m ')のとき						
	l=x	l=y	l=z	l=x	l=y	l=z				
P(l X)	70%	20%	10%	80%	12%	8%				
P(l Y)	20%	60%	20%	10%	80%	10%				
P(l Z)	5%	15%	80%	5%	5%	90%				

があると仮定する. そして, これらの基準状態における最大出 力低下率 $d_{C,STC}$ (Correct)は, それぞれ x%, y%, z%であること がわかっている. また, これらの PV モジュールの I-V 特性を屋 外の{(日射強度 G)∩(PV モジュール温度 T_m)}(G∩ T_m)および {(日射強度 G')∩(PV モジュール温度 T_m ')}(G∩ T_m ')の下で測 定し, ある方法で換算した基準状態の最大出力低下率の尤度 (確率分布)P(l|X), P(l|Y), P(l|Z)(l: x%, y%, z%)が, それぞれ 表 1 のように与えられていると仮定する.

いま、この三枚の PV モジュールから一枚を無作為に選んで (G \cap T_m)の下で I-V 特性を測定し、その方法で換算した推定最 大出力低下率 $d_A(G\cap$ T_m)(Answer)が x%であったとする. 第 1 回目の試行であることから「理由不十分の法則」により事前確 率 $P_0(X)=P_0(Y)=P_0(Z)=1/3$ とすると、「選んだ PV モジュールが X, Y, Z である確率(事後確率) $P_1(X|x), P_1(Y|x), P_1(Z|x)$ 」は、 それぞれ

 $P_1(X|x) = \frac{P(x|X)P_0(X)}{P(x|X)P_0(X) + P(x|Y)P_0(Y) + P(x|Z)P_0(Z)}$ $= \frac{0.7 \cdot 1/3}{0.7 \cdot 1/3 + 0.2 \cdot 1/3 + 0.05 \cdot 1/3}$ = 73.7%

$$P_1(Y|x) = \frac{P(x|Y)P_0(Y)}{P(x|X)P_0(X) + P(x|Y)P_0(Y) + P(x|Z)P_0(Z)}$$
$$= \frac{0.2 \cdot 1/3}{0.7 \cdot 1/3 + 0.2 \cdot 1/3 + 0.05 \cdot 1/3}$$
$$= 21.0\%$$

 $P_1(Z|x) = \frac{P(x|Z)P_0(Z)}{P(x|X)P_0(X) + P(x|Y)P_0(Y) + P(x|Z)P_0(Z)}$ $= \frac{0.2 \cdot 1/3}{0.7 \cdot 1/3 + 0.2 \cdot 1/3 + 0.05 \cdot 1/3}$ = 5.3%

となる.

さらに、 $(G'\cap T_m')$ の下で第 2 回目の試行を行い、得られた $d_A(G'\cap T_m')$ がやはりx%であったとすると、「選んだ PV モジュー ルが X, Y, Z である事後確率 $P_2(X|x), P_2(Y|x), P_2(Z|x)$ 」は、第 1 回目の試行の結果を事前確率として $(P_1(X)=P_1(X|x), P_1(Y)=P_1(Y|x), P_1(Z)=P_1(Z|x))$ 、次のようになる.

$$P_2(X|x) = \frac{P(x|X)P_1(X)}{P(x|X)P_1(X) + P(x|Y)P_1(Y) + P(x|Z)P_1(Z)}$$
$$= \frac{0.8 \cdot 0.737}{0.8 \cdot 0.737 + 0.1 \cdot 0.210 + 0.05 \cdot 0.053} = 96.1\%$$

$$P_{2}(Y|x) = \frac{P(x|Y)P_{1}(Y)}{P(x|X)P_{1}(X) + P(x|Y)P_{1}(Y) + P(x|Z)P_{1}(Z)}$$
$$= \frac{0.1 \cdot 0.210}{0.8 \cdot 0.737 + 0.1 \cdot 0.210 + 0.05 \cdot 0.053} = 3.4\%$$
$$P(x|Z)P_{1}(Z)$$

$$P_{2}(Z|x) = \frac{P_{2}(X|X)P_{1}(X) + P(x|Y)P_{1}(Y) + P(x|Z)P_{1}(Z)}{P_{1}(X) + P_{2}(X)P_{1}(X) + P_{2}(X)P_{1}(X)}$$
$$= \frac{0.05 \cdot 0.053}{0.8 \cdot 0.737 + 0.1 \cdot 0.210 + 0.05 \cdot 0.053} = 0.5\%$$

仮に測定者が事後確率の判定基準を「80%以上」としている とすると、全2回の試行によって「選んだ PV モジュールは X (*dc,src=x%*)である」と判定することができる.

っまり, 異なる *dc,src* について, それらを代表する尤度を, 適切な方法かつ広範な環境領域に対して用意することができれば, 複数の屋外での I-V 特性測定機会によって, 対象とする PV モジュールの最大出力低下率 *dc,src* を「ある確からしさ」で判定することができるはずである.

3.仮説の検証の準備(尤度表の作成)

3.1 屋外で測定した電流-電圧特性から基準状態の最 大出力を換算する方法

屋外で測定した PV モジュールの I-V 特性から基準状態の 最大出力を換算する方法には,筆者が前報⁽⁴⁾で提案した方法 を採用する.以下にその方法を再掲する.

ある日射強度 $G[W/m^2]$ および PV モジュール温度 $T[^{\circ}C]$ に おける PV モジュールの I-V 特性を概念的に示した図 1 にお いて,最大出力点 P_m は一次関数 a と一次関数 b の交点であ り,それぞれの関数は $I_{sc}(G\cap T)[A]$, $V_{oc}(G\cap T)[V]$, $R_a(G\cap T)[\Omega]$ および $R_b(G\cap T)[\Omega]$ という四つの要素を用いて記述することが できる. すなわち,

関数
$$a$$
 : $I = -\frac{1}{R_a(G\cap T)}V + I_{SC}(G \cap T)$ 式(1)

図 1 PV モジュールの I-V 特性と Pmを 規定する四要素(概念図)

関数
$$b$$
 : I = $-\frac{1}{R_b(G\cap T)}V + \frac{V_{OC}(G\cap T)}{R_b(G\cap T)}$ 式(2)

いま、ここに同質な(たとえば、ともに結晶シリコン系の)二枚 の PV モジュールがあるとする. 一方の PV モジュール K (Known:既知モジュール)は初期状態からの最大出力の低下 がなくかつ基準状態の四要素(*Isc.K.stc*, *Voc.K.stc*, *Ra.K.stc*, *Rb.K.stc*)が既知である. これに対して他方の PV モジュール M_i (未知モジュール)は基準状態の四要素(*Isc.M.stc*, *Voc.M.stc*, *Ra.M.stc*, *Rb.M.stc*)が未知である.

この二枚のPVモジュールのI-V特性を、同一環境下(G∩T) で取得し、それぞれについて得られた四要素($I_{SC,K}(G\cap T)$, $V_{OC,K}(G\cap T)$, $R_{a,K}(G\cap T)$, $R_{b,K}(G\cap T)$, $I_{SC,Mi}(G\cap T)$, $V_{OC,Mi}(G\cap T)$, $R_{a,Mi}(G\cap T)$, $R_{b,Mi}(G\cap T)$)が次の線形(比例)関係をもっていると する.

$I_{SC,Mi}(G \cap T) = r_i I_{SC,K}(G \cap T)$	式(3)
$V_{OC,Mi}(G \cap T) = r_v V_{OC,K}(G \cap T)$	式(4)
$R_{a,Mi}(G \cap T) = r_a R_{a,K}(G \cap T)$	式(5)
$R_{b,Mi}(G \cap T) = r_b R_{b,K}(G \cap T)$	式(6)

ただし, *r_i*, *r_v*, *r_a*, *r_b* は取得データから得られる既知モジュ ール K と未知モジュール M_iの *I_{SC}*, *V_{OC}*, *R_a*, *R_b*の間の 比例定数

すると、未知モジュール Mi の基準状態における四要素 (*Isc.mi.stc*, *Voc.mi.stc*, *Ra.Mi.stc*, *Rb.Mi.stc*)は以下の式で求めるこ とができる.

$I_{SC,Mi,STC} = r_i I_{SC,K,STC}$	式(7)
$V_{OC,Mi,STC} = r_{v} V_{OC,K,STC}$	式(8)
$R_{a,Mi,STC} = r_a R_{a,K,STC}$	式(9)
$R_{b,Mi,STC} = r_b R_{b,K,STC}$	式(10)

したがって,式(1)(2)および式(7)~(10)より,未知モジュール Miの基準状態の推定最大出力*P_{m,Mi,STC}*[W]は次の式で換算す ることができる.

$P_{m,Mi,STC} =$	I _{pm,Mi,STC} V _{pm,Mi,STC}	式(11)
------------------	---	-------

$$V_{pm,Mi,STC} = \frac{r_a R_{a,K,STC}}{r_a R_{a,K,STC} - r_b R_{b,K,STC}} \left(r_v V_{OC,K,STC} - \right)$$

$$r_b r_i R_{b,K,STC} I_{SC,K,STC}$$

よって, 未知モジュール Mi の工場出荷時の最大出力とこの Pm.Mi.STCを比較することで, 未知モジュール Mi の現時点におけ る推定最大出力低下率 da(G) T)を導出することができる.

3.2 PV モジュールの電流 - 電圧特性の測定

さまざまな屋外環境領域下における PV モジュールの I-V 特 性の測定も、筆者が本学会で公表した前報⁽⁴⁾と同様の方法で 行った.全体の測定期間は 2014 年 11 月から 2017 年 2 月ま でである. I-V 特性測定装置には日本カーネルシステム株式 会社製 PVA12280 を, また, 受光面日射強度の測定にはクリマ 表3に示すとおりである. なお, 表中の「現在の基準状態の値」 テック株式会社製高速応答日射計 CHF-SR03 をもちいた.

屋外で I-V 特性を測定した PV モジュール M_i(i=1~12)およ び既知モジュール Kの発電性能特性は、それぞれ表2および

とは,屋外での測定に供する前に,当所が所有するソーラーシ ミュレータを用いて屋内で測定した値である.

表 2 屋外で I-V 特性を測定した PV モジュール M_i(i=1~12)の発電性能特性

		M1	M ₂	M3	M4	M5	M6
製造者		京セラ	シャープ	三菱電機	京セラ	三菱電機	京セラ
型式		SPG1786T-02KDX	ND-170AA	PV-MG126CF	SPG167-04	PV-MG126CF	SPG167-04
種類		多結晶 Si	多結晶 Si	多結晶 Si	多結晶 Si	多結晶 Si	多結晶 Si
	P _m [W]	179	170	126	167	126	167
<i>k</i> 4	V _{pm} [V]	23.8	21.4	19.2	23.2	19.2	23.2
ഹ	Ipm [A]	7.51	7.96	6.56	7.20	6.56	7.20
値	Voc [V]	29.4	26.0	24.1	28.9	24.1	28.9
	Isc [A]	8.15	8.60	7.12	8.00	7.12	8.00
	P _m [W]	-	-	129	171	134	171
工	V _{pm} [V]	-	-	19.0	23.0	19.5	23.2
出	Ipm [A]	-	-	6.76	7.40	6.88	7.34
荷値	Voc [V]	-	-	24.1	28.9	24.5	29.1
,,	Isc [A]	-	-	7.51	8.11	7.15	8.14
#	P _m [W]	186	174	123	161	123	153
本 進 _刊	V _{pm} [V]	24.2	21.0	18.8	23.1	18.9	22.8
状在	Ipm [A]	7.67	8.26	6.56	6.97	6.50	6.71
のの	Voc [V]	29.8	26.1	24	29.0	24.1	29.2
但	Isc [A]	8.26	8.85	7.22	7.57	7.13	7.75
出力低	下率 dc,stc	0%	0%	-4.7%	-5.7%	-8.2%	-10.5%
使用期	間	未使用	未使用	約12年	約11年	約12年	約11年
		M 7	M8	M9	M10	M11	M12
製造者		京セラ	三菱電機	三菱電機	シャープ	三菱電機	三菱電機
型式		SPG167-04	PV-MG126CF	PV-MG126CF	NT-132BJ	PV-MG126CF	PV-MG126CF
種類		多結晶 Si	多結晶 Si	多結晶 Si	単結晶 Si	多結晶 Si	多結晶 Si
	$P_m[W]$	167	126	126	132	126	126
鉉	V _{pm} [V]	23.2	19.2	19.2	26.8	19.2	19.2
板	Ipm [A]	7.20	6.56	6.56	4.93	6.56	6.56
但	Voc[V]	28.9	24.1	24.1	33.5	24.1	24.1
	I _{SC} [A]	8.00	7.12	7.12	5.53	7.12	7.12
	$P_m[W]$	173	131	127	134	129	121
工場	V _{pm} [V]	23.2	19.0	18.8	26.4	19.1	18.6
出	Ipm [A]	7.44	6.91	6.75	5.09	6.74	6.51
何値	Voc[V]	29.1	24.1	23.7	33.5	24.1	23.5
	Isc[A]	8.04	7.60	7.35	5.68	7.31	7.08
韭	$P_m[W]$	154	116	112	115	107	99.2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V _{pm} [V]	21.8	18.5	18.2	26.0	18.7	17.1
状在	Ipm [A]	7.05	6.25	6.16	4.45	5.69	5.81
の値	Voc[V]	29.1	24.0	23.6	33.3	23.9	23.1
	Isc[A]	7.82	7.36	6.95	5.16	6.82	6.83
出力低	下率 dc,stc	-11.0%	-11.5%	-11.8%	-14.2%	-17.1%	-18.0%
	-			the sector	44.44.5	the second	44 10 5

注:出力低下率 dc.src=(現在の基準状態の Pm-工場出荷値の Pm)/工場出荷値の Pm

製造者		KIS							
型式	GT40								
種類		単結晶 Si							
	銘板値	現在の基準状態の値							
Pm [W]	48	49.4							
V _{pm} [V]	18.2	18.2							
Ipm [A]	2.64	2.71							
Voc [V]	22.4	22.4							
Isc [A]	2.84	2.88							

#### 表3 既知モジュールKの発電性能特性

## 3.3 PV モジュール M_iの推定最大出力低下率の確率分布 の算出結果

表 2 に示した  $d_{C,STC}$ の異なる 12 枚の PV モジュール  $M_i$ (i=1 ~12)に対して、3.1 節および 3.2 節の方法により推定した最大 出力低下率  $d_A \varepsilon$ ,複数の環境領域(日射強度領域 Gと既知モ ジュール温度領域  $T_{m,K}$ との組み合わせ)( $G\cap T_{m,K}$ )ごとに算出し た. 一例として、PV モジュール  $M_1$ の確率分布を表 4 に示す (その他の PV モジュールの確率分布は別表 1 から別表 11 に 示す).

## 3.4 最大出力低下率の尤度表 P(l|d_A)の作成

表4および別表1から別表11の確率分布をもとにして、2章 に示した方法による推定最大出力低下率 d₄の尤度表 P(l|d₄) (*l*: dc,src)を環境領域毎に作成する.

(1)まず, 測定に用いた 12 枚の PV モジュールのうち M3, M4,

- M₅, M₆, M₁₀, M₁₁, M₁₂ の七枚の確率分布は以下のように 扱う.
- ・「-4%≥dc,src>-5%」の尤度表:M3を用いる.
- ・「-5%≥d_{C,STC}>-6%」の尤度表:M₄を用いる.
- ・「-8%≥d_{C,STC}>-9%」の尤度表:M5を用いる.

・「-10%≥d_{C,STC}>-11%」の尤度表:M₆を用いる.

・「-14%≥d_{C,STC}>-15%」の尤度表:M₁₀を用いる.

・「-17%≥dc,stc>-18%」の尤度表:M11を用いる.

・「-18%≥dc,stc>-19%」の尤度表:M12を用いる.

- (2)M₁とM₂はともに *d_{c,stc}*=0%, M₇とM₈とM₉はいずれも「-11%≥*d_{c,stc}*>12%」の範囲にあるので,それらは次のように 扱う.
- ・「0%≥d_{C,STC}>-1%」の尤度表:M₁とM₂の平均値を用いる.
- ・「-11%≥d_{C,STC}>-12%」の尤度表:M7とM8とM9の平均値を 用いる.
- (3)上記だけでは、「-1%≥dc.src>-2%」「-2%≥dc.src>-3%」「-3%≥dc.src>-4%」「-6%≥dc.src>-7%」「-7%≥dc.src>-8%」「-9%≥dc.src>-10%」「-12%≥dc.src>-13%」「-13%≥dc.src>-14%」 「-15%≥dc.src>-16%」「-16%≥dc.src>-17%」の尤度表が不足 している.いずれはこれらの尤度表を作成することができるよ うにさらに複数の PV モジュールの I-V 特性を測定すること になるが、本論文を執筆する時点ではまだこれを実施してい ない. そこで、それらについては次のようにして暫定的な尤 度表を作成する.
- ・「-1%≥dc,src>-2%」「-2%≥dc,src>-3%」「-3%≥dc,src>-4%」:
   「0%≥dc,src>-1%」(M1とM2の平均値)と「-4%≥dc,src>-5%」 (M3)の尤度表の内挿によって作成する.
- ・「-6%≥dc,src>-7%」「-7%≥dc,src>-8%」:「-5%≥dc,src>-6%」
   (M₄)と「-8%≥dc,src>-9%」(M₅)の尤度表の内挿によって 作成する.
- ・「-9%≥d_{C,STC}>-10%」:「-8%≥d_{C,STC}>-9%」(M₅)と「-10%≥d_{C,STC}>-11%」(M₆)の尤度表の内挿によって作成す る.
- ・「-12%≥d_{C,STC}>-13%」「-13%≥d_{C,STC}>-14%」:「-11%≥d_{C,STC}>-12%」(M₇ と M₈ と M₉の平均値)と「-14%≥d_{C,STC}>-15%」 (M₁₀)の尤度表の内挿によって作成する.
- $\lceil -15\% \ge d_{C,STC} > -16\% \rfloor$   $\lceil -16\% \ge d_{C,STC} > -17\% \rfloor$  :  $\lceil -14\% \ge d_{C,STC} > -$

玛	環境領域	N		$d_A\left(G\cap T_{m,K}\right) \ [\%]$																	
G	$T_{m,K}$	IV	+6≥	>+5≥	≥ >+	4≥ >	+3≥	>+2≥	>+	-1≥ :	≥0±	>-	1≥	>-2≥	>-	-3≥	>-4≥	>-5≥	2	>-6≥	>-7
200	$20 \le T_{m,K} < 30$	127				5.5	15.	0 33	.1	20.5	17.	3	4.7	2	.4	0.8	0.8	3		-	
$\leq G <$	$30 \le T_{m,K} < 40$	142				14.1	11.	3 24	.6	7.7	12.	0	16.9	7	.7	4.9	)				
400	$40 \le T_{m,K} < 50$	56					5.4	4 33	.9	25.0	23.	2	10.7	1	.8						
400	$20 \le T_{m,K} < 30$	63			1.6	4.8	1.0	6 49	.2	20.6	15.	9	4.8			1.6	5	ł			
$\leq G <$	$30 \le T_{m,K} < 40$	179		.7	6.7	7.3	15.	.6 38	.5	13.4	10.	6	4.5								
600	$40 \le T_{m,K} < 50$	140			0.7	0.7	8.0	6 30	0.7	12.9	27.	1	14.3	4	.3		0.2	7			
600	$30 \le T_{m,K} < 40$	212			3.8	6.1	15.	1 39	0.2	17.0	16.	5	1.9	l	.5					1	
$\leq G <$	$40 \le T_{m,K} < 50$	263		.1	6.1	2.7	9.9	9 24	.0	15.2	21.	7	13.3	4	.2	0.8	}				
800	$50 \le T_{m,K} < 60$	108					2.0	8 26	í.9	15.7	45.	4	9.3								
6	$30 \le T_{m,K} < 40$	103			1.0		8.	7 38	8.8	32.0	17.	5	1.9					i		-	
G≥ 800	$40 \le T_{m,K} < 50$	416	(	).5	2.2	1.4	10.	.8 36	6.1	19.2	18.	8	6.3	4	.8						
000	$50 \le T_{m,K} < 60$	294					6	5 26	6.9	17.3	23.	8	17.7	7	.5	0.3					

表4 モジュール M₁(*d*_{C,STC}=0%)の *d_A*(G∩T_{m,K})の確率分布(N:各環境領域での取得データ数)

$d_A \Rightarrow$	6≥	>5≥	>4	4≥ >	-3≥	>2≥	>1≥	≥	>0≥	>-	1≥	>-2≥	<u>&gt;-</u>	3≥	>-4≥	>-52	≥	>-6≥	>-7	′≥	>-8
0≤d _C <-1	0.4	4	1.8	4.5	19.	6 3	4.0	12.0	) 1	7.3	7.	5	2.5		0	.4			ļ	I	
-1≤d _C <-2	0	3	1.4	3.3	14.	7 2.	5.5	9.0	1.	3.0	9.0	)	6.9	12.5	2	.8	0.9	0	.9		
-2≤d _C <-3	0.2	2	0.9	2.2	9.8	3 1	7.0	6.0	8	8.7	10.	4	11.3	25.0	5	.2	1.7	1	.7		
-3≤d _C <-4	0.	1	0.5	1.1	4.9	> 8	.5	3.0	4	1.4	11.	9	15.7	37.5	7	.6	2.5	2	.5		
-4≤d _C <-5											13.	3	20.0	50.0	10	0.0	3.3	3	.3		
-5≤d _C <-6		Ì											3.9	6.9	30	6.3	23.5	9	.8	14	.7
-6 <i>≤</i> d _C <-7													2.6	4.6	24	4.2	15.7	1.	2.2	19	.8
-7≤d _C <-8												Ì	1.3	2.3	12	2.1	7.8	14	4.6	25	.0
-8≤d _C <-9																		12	7.0	30	.1
<i>-9≦d</i> _C <-10													0.5		9	.8	13.6	14	4.6	24	.9
-10≤dc<-11						1					1		0.9	1 1 1	19	9.6	27.1	12	2.1	19	.6
-11≤d _C <-12																		3	.8	13	.8
-12≤d _C <-13																		2	.5	9.	2
<i>-13≤d</i> _C <-14																		1	.3	4.	6
-14≤d _C <-15																					
-15≤d _C <-16				1											-						
<i>-16≤d_C&lt;-17</i>																					
-17≤d _C <-18																					
-18≤d _C <-19		į			<u> </u>							Ì			į						
$d_A \Rightarrow$	-8≥	>-9≥	>-]	0≥ >-	11≥	>-12≥	>-13	3≥ :	>-14≥	>-1	5≥	>-16	≥ >-1	17≥ >	-18≥	>-19	≥ :	>-20≥	>-2	1≥	>-22
$0 \leq d_C < 1$					<u> </u>		į														
-1≤d _C <-2					<u> </u>						, ,										
-2≤d _C <-3				1											_						
-3≤d _C <-4									_		ļ							_			
-4≤dc<-5					<u> </u>	_					ļ										
-5≤d _C <-6	3.	9		1.0	<u> </u>																
-6 <i>≤</i> d _C <-7	10.	6	7.8	2.0	0.4	4												_			
-7≤d _C <-8	17.	2	15.5	3.0	0.8	8												_			
-8 <i>≤</i> d _C <-9	23.	9	23.3	4.0	1.1	1						_						_			
<i>-9≤d</i> _C <-10	19.	4	14.0	2.0	1.0	2			_			_			_			_			
-10≤d _C <-11	15.	0	4.7		0.9	2			_									_			
-11≤d _C <-12	23.	0	29.2	11.1	10.	1 6	.2	2.3		).4					_						
-12≤d _C <-13	15.	4	22.5	12.6	23.	4 8	.2	4.5	1	.7								_			
<i>-13≤d_C&lt;-14</i>	7.	7	15.7	14.1	36.	7 1	0.2	6.7	1 3	8.1		_			_			_			
-14≤d _C <-15			8.9	15.6	50.	0 1.	2.2	8.9	4	4.4											
-15≤d _C <-16			5.9	10.7	33.	9 8	.7	6.8	1	1.6	7.	5	6.3	6.9	0	).3	1.1	0	).3		
<i>-16≤d</i> _C <-17			3.0	5.8	17.	8 5	.2	4.7	1	8.7	14.	9	12.6	13.8	0	).6	2.3	0	).6		
-17≤d _C <-18				0.9	1.3	7   1	.7	2.6	2	5.9	22.	4	19.0	20.7	0	).9	3.4	6	).9		
<i>-18≤d</i> _C <-19	0.	7	21.5	14.8	21.	5 1	5.8	12.8	8   8	8.1	0.	7	1.3	1.3	0	).7			- 1		

表5 環境領域{(400≤G<600)∩(40≤T_{m,K}<50)}の尤度表

15%」(M10)と「-17%≥d_{C,STC}>-18%」(M11)の尤度表の内挿 によって作成する.

以上によって、 $\{(200 \le G < 400) \cup (400 \le G < 600)\} \cap \{(20 \le T_{m,K} < 30) \cup (30 \le T_{m,K} < 40) \cup (40 \le T_{m,K} < 50)\}$ ,  $\{(400 \le G < 600) \cup (G \ge 800)\}$  $\cap \{(30 \le T_{m,K} < 40) \cup (40 \le T_{m,K} < 50) \cup (50 \le T_{m,K} < 60)\}$ の合計 12 種類 の環境領域に対応した尤度表 P(*l*|*d*₄)が用意できた. 例として, 環境領域{(400≤G<600)∩(40≤T_{m,K}<50)}および{(600≤G<800) ∩(40≤*T_{m,K}*<50)}の尤度表を表 5 および表 6 に示す(他の環境 領域の尤度表は, 別表 12 から別表 21 に示す).

$d_A \Rightarrow$	6≥ >	5≥ >4	4≥ >3	3≥ >2	2≥ >	1≥ >	•0≥ >·	·1≥ >-	-2≥ >-	-3≥ >-	4≥ >-	·5≥ >	-6≥	>-7≥	>-8
0≤d _C <-1	0.6	4.4	4.1	19.0	22.5	14.6	19.9	11.6	2.3	0.4					1
<i>-1≤d</i> _C <-2	0.4	3.3	3.1	14.4	16.8	11.0	19.5	14.7	4.9	5.4	1.2	0.5	1.9	2	.4
-2≤d _C <-3	0.3	2.2	2.1	9.8	11.2	7.3	19.0	17.8	7.5	10.5	2.3	1.0	3.7	4	.7
<i>-3≤d</i> _C <-4	0.2	1.1	1.1	5.2	5.6	3.7	18.5	20.9	10.1	15.6	3.5	1.5	5.5	7.	.0
-4≤d _C <-5				0.7				24.0	12.7	20.7	4.7	2.0	7.3	9	.3
-5≤d _C <-6							1	1.0	6.7	6.7	11.9	15.0	10.9	32	2.6
-6≤d _C <-7		1				ĺ		0.7	4.5	4.5	7.9	10.5	18.4	29	9.0
-7 <i>≤</i> d _C <-8								0.3	2.2	2.2	4.0	6.0	25.8	25	5.4
-8≤d _C <-9												1.5	33.3	21	1.7
-9≤d _C <-10									Ì		0.7	2.8	18.3	18	8.9
-10≤d _C <-11											1.4	4.1	3.2	16	6.1
-11≤d _C <-12		1						1	î 1 1	1	1	0.5	3.5	12	2.7
-12≤d _C <-13												0.3	2.3	8	.5
<i>-13≤d</i> _C <-14												0.2	1.2	4	.2
<i>-14≤d</i> _C <-15															
<i>-15≤d</i> _C <-16															
<i>-16≤d</i> _C <-17						1			1		1			1	
<i>-17≤d</i> _C <-18															
<i>-18≤d</i> _C <-19						1								1	.1
$d_A \Rightarrow$	-8≥ >-	.9≥ >-1	0≥ >-1	1≥ >-1	2≥ >-1	3≥ >-	14≥ >-	15≥ >-	16≥ >-	17≥ >-	18≥ >-	19≥ >-	20≥ >	-21≥	>-23
$0 \leq d_C < 1$															
<i>-1≤d</i> _C <-2					1	1	1								
	0.2														
<i>-2≤d</i> _C <-3	0.2 0.3					1 1 1 1									
-2≤d _C <-3 -3≤d _C <-4	0.2 0.3 0.5														
-2≤d _C <-3 -3≤d _C <-4 -4≤d _C <-5	0.2 0.3 0.5 0.7					1 1 1 1 1 1 1 1 1 1 1									
$ \begin{array}{r} -2 \leq d_{C} <-3 \\ \hline -3 \leq d_{C} <-4 \\ \hline -4 \leq d_{C} <-5 \\ \hline -5 \leq d_{C} <-6 \end{array} $	0.2 0.3 0.5 0.7 13.5	1.6				1 									
$ \begin{array}{c} -2 \leq d_C <-3 \\ \hline -3 \leq d_C <-4 \\ \hline -4 \leq d_C <-5 \\ \hline -5 \leq d_C <-6 \\ \hline -6 \leq d_C <-7 \\ \end{array} $	0.2 0.3 0.5 0.7 13.5 14.9	<i>1.6</i> <i>6.8</i>	1.9	1.0											
$ \begin{array}{r} -2 \leq d_C <-3 \\ \hline -3 \leq d_C <-4 \\ \hline -4 \leq d_C <-5 \\ \hline -5 \leq d_C <-6 \\ \hline -6 \leq d_C <-7 \\ \hline -7 \leq d_C <-8 \end{array} $	0.2 0.3 0.5 0.7 13.5 14.9 16.3	1.6 6.8 12.0	<u>1.9</u> <u>3.7</u>	<u>1.0</u> 2.0		I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I           I									
$ \begin{array}{c} -2 \leq d_C <-3 \\ -3 \leq d_C <-4 \\ -4 \leq d_C <-5 \\ -5 \leq d_C <-6 \\ -6 \leq d_C <-7 \\ -7 \leq d_C <-8 \\ -8 \leq d_C <-9 \\ \end{array} $	0.2 0.3 0.5 0.7 13.5 14.9 16.3 17.7	1.6 6.8 12.0 17.2	1.9 3.7 5.6	1.0 2.0 3.0											
$\begin{array}{c} -2 \leq d_C <-3 \\ \hline -3 \leq d_C <-4 \\ \hline -4 \leq d_C <-5 \\ \hline -5 \leq d_C <-6 \\ \hline -6 \leq d_C <-7 \\ \hline -7 \leq d_C <-8 \\ \hline -8 \leq d_C <-9 \\ \hline -9 \leq d_C <-10 \end{array}$	0.2 0.3 0.5 0.7 13.5 14.9 16.3 17.7 29.1	1.6           6.8           12.0           17.2           18.7	<i>1.9</i> <i>3.7</i> <i>5.6</i> <i>5.5</i>	1.0 2.0 3.0 5.0	0.7	-         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -	0.2								
$\begin{array}{c} -2 \leq d_C < 3 \\ \hline -3 \leq d_C < 4 \\ \hline -4 \leq d_C < 5 \\ \hline -5 \leq d_C < 6 \\ \hline -6 \leq d_C < 7 \\ \hline -7 \leq d_C < 8 \\ \hline -8 \leq d_C < 9 \\ \hline -9 \leq d_C < 10 \\ \hline -10 \leq d_C < 11 \end{array}$	0.2 0.3 0.5 0.7 13.5 14.9 16.3 17.7 29.1 40.6	1.6           6.8           12.0           17.2           18.7           20.3	1.9 3.7 5.6 5.5 5.5	1.0 2.0 3.0 5.0 6.9	0.7		0.2								
$\begin{array}{c} -2 \leq d_C <-3 \\ \hline -3 \leq d_C <-4 \\ \hline -4 \leq d_C <-5 \\ \hline -5 \leq d_C <-6 \\ \hline -6 \leq d_C <-7 \\ \hline -7 \leq d_C <-8 \\ \hline -8 \leq d_C <-9 \\ \hline -9 \leq d_C <-10 \\ \hline -10 \leq d_C <-11 \\ \hline -11 \leq d_C <-12 \end{array}$	0.2 0.3 0.5 0.7 13.5 14.9 16.3 17.7 29.1 40.6 12.1	1.6           6.8           12.0           17.2           18.7           20.3           21.6	1.9 3.7 5.6 5.5 5.5 10.7	1.0 2.0 3.0 5.0 6.9 13.3	0.7 1.4 10.5	11.5	0.2 0.5 2.4	1.3							
$\begin{array}{c} -2 \leq d_C < 3 \\ \hline -3 \leq d_C < 4 \\ \hline -4 \leq d_C < 5 \\ \hline -5 \leq d_C < 6 \\ \hline -6 \leq d_C < 7 \\ \hline -7 \leq d_C < 8 \\ \hline -8 \leq d_C < 9 \\ \hline -9 \leq d_C < 10 \\ \hline -10 \leq d_C < 11 \\ \hline -11 \leq d_C < 12 \\ \hline -12 \leq d_C < 13 \end{array}$	0.2 0.3 0.5 0.7 13.5 14.9 16.3 17.7 29.1 40.6 12.1 8.4	1.6           6.8           12.0           17.2           18.7           20.3           21.6           14.7	1.9 3.7 5.6 5.5 5.5 10.7 8.7	1.0 2.0 3.0 5.0 6.9 13.3 12.7	0.7 1.4 10.5 15.6	 	0.2 0.5 2.4 10.3	1.3	1.0						
$\begin{array}{c} -2 \leq d_C <-3 \\ -3 \leq d_C <-4 \\ -4 \leq d_C <-5 \\ -5 \leq d_C <-6 \\ -6 \leq d_C <-7 \\ -7 \leq d_C <-8 \\ -8 \leq d_C <-9 \\ -9 \leq d_C <-10 \\ -10 \leq d_C <-11 \\ -11 \leq d_C <-12 \\ -12 \leq d_C <-13 \\ -13 \leq d_C <-14 \end{array}$	0.2 0.3 0.5 0.7 13.5 14.9 16.3 17.7 29.1 40.6 12.1 8.4 4.7	1.6           6.8           12.0           17.2           18.7           20.3           21.6           14.7           7.9	1.9 3.7 5.6 5.5 5.5 10.7 8.7 6.8	1.0 2.0 3.0 5.0 6.9 13.3 12.7 12.1	0.7 1.4 10.5 15.6 20.8	11.5 15.0 18.6	0.2 0.5 2.4 10.3 18.1	<u> </u>	1.0						
$\begin{array}{c} -2 \leq d_C < 3 \\ \hline -3 \leq d_C < 4 \\ \hline -4 \leq d_C < 5 \\ \hline -5 \leq d_C < 6 \\ \hline -6 \leq d_C < 7 \\ \hline -7 \leq d_C < 8 \\ \hline -8 \leq d_C < 9 \\ \hline -9 \leq d_C < 10 \\ \hline -10 \leq d_C < 11 \\ \hline -11 \leq d_C < 12 \\ \hline -12 \leq d_C < 13 \\ \hline -13 \leq d_C < 14 \\ \hline -14 \leq d_C < 15 \\ \end{array}$	0.2 0.3 0.5 0.7 13.5 14.9 16.3 17.7 29.1 40.6 12.1 8.4 4.7 1.0	1.6           6.8           12.0           17.2           18.7           20.3           21.6           14.7           7.9           1.0	1.9 3.7 5.6 5.5 10.7 8.7 6.8 4.8	1.0 2.0 3.0 5.0 6.9 13.3 12.7 12.1 11.5	0.7 1.4 10.5 15.6 20.8 26.0	11.5 15.0 18.6 22.1	0.2 0.5 2.4 10.3 18.1 26.0	1.3 2.5 3.6 4.8	<u> </u>						
$\begin{array}{c} -2 \leq d_C < 3 \\ -3 \leq d_C < 4 \\ -4 \leq d_C < 5 \\ -5 \leq d_C < 6 \\ -6 \leq d_C < 7 \\ -7 \leq d_C < 8 \\ -8 \leq d_C < 9 \\ -9 \leq d_C < 10 \\ -10 \leq d_C < 11 \\ -11 \leq d_C < 12 \\ -12 \leq d_C < 13 \\ -13 \leq d_C < 14 \\ -14 \leq d_C < 15 \\ -15 \leq d_C < 16 \end{array}$	0.2           0.3           0.5           0.7           13.5           14.9           16.3           17.7           29.1           40.6           12.1           8.4           4.7           1.0           0.6	1.6           6.8           12.0           17.2           18.7           20.3           21.6           14.7           7.9           1.0           0.6	1.9 3.7 5.6 5.5 5.5 10.7 8.7 6.8 4.8 3.2	1.0 2.0 3.0 5.0 6.9 13.3 12.7 12.1 11.5 7.9	0.7 1.4 10.5 15.6 20.8 26.0 19.9	11.5 15.0 18.6 22.1 15.9	0.2 0.5 2.4 10.3 18.1 26.0 21.8	1.3 2.5 3.6 4.8 10.3	<u> </u>	7.5	1.4	1.2	0.4		2.4
$\begin{array}{c} -2 \leq d_C <-3 \\ -3 \leq d_C <-4 \\ -4 \leq d_C <-5 \\ -5 \leq d_C <-6 \\ -6 \leq d_C <-7 \\ -7 \leq d_C <-8 \\ -8 \leq d_C <-9 \\ -9 \leq d_C <-10 \\ -10 \leq d_C <-11 \\ -11 \leq d_C <-12 \\ -12 \leq d_C <-13 \\ -13 \leq d_C <-14 \\ -14 \leq d_C <-15 \\ -15 \leq d_C <-16 \\ -16 \leq d_C <-17 \end{array}$	0.2 0.3 0.5 0.7 13.5 14.9 16.3 17.7 29.1 40.6 12.1 8.4 4.7 1.0 0.6 0.3	1.6           6.8           12.0           17.2           18.7           20.3           21.6           14.7           7.9           1.0           0.6           0.3	1.9 3.7 5.6 5.5 5.5 10.7 8.7 6.8 4.8 3.2 1.6	1.0 2.0 3.0 5.0 13.3 12.7 12.1 11.5 7.9 4.2	0.7 1.4 10.5 15.6 20.8 26.0 19.9 13.8	11.5 15.0 18.6 22.1 15.9 9.7	0.2 0.5 2.4 10.3 18.1 26.0 21.8 17.7	1.3 2.5 3.6 4.8 10.3 15.8	1.0 1.9 2.9 8.8 14.8	7.5	<u> </u>	<u> </u>	0.4		
$\begin{array}{c} -2 \leq d_C < 3 \\ -3 \leq d_C < 4 \\ -4 \leq d_C < 5 \\ -5 \leq d_C < 6 \\ -6 \leq d_C < 7 \\ -7 \leq d_C < 8 \\ -8 \leq d_C < 9 \\ -9 \leq d_C < 10 \\ -10 \leq d_C < 11 \\ -11 \leq d_C < 12 \\ -12 \leq d_C < 13 \\ -13 \leq d_C < 14 \\ -14 \leq d_C < 15 \\ -15 \leq d_C < 16 \\ -16 \leq d_C < 17 \\ -17 \leq d_C < 18 \end{array}$	0.2           0.3           0.5           0.7           13.5           14.9           16.3           17.7           29.1           40.6           12.1           8.4           4.7           1.0           0.6           0.3	1.6           6.8           12.0           17.2           18.7           20.3           21.6           14.7           7.9           1.0           0.6           0.3	1.9 3.7 5.6 5.5 10.7 8.7 6.8 4.8 3.2 1.6	1.0           2.0           3.0           5.0           6.9           13.3           12.7           12.1           11.5           7.9           4.2           0.6	0.7 1.4 10.5 15.6 20.8 26.0 19.9 13.8 7.7	11.5 15.0 18.6 22.1 15.9 9.7 3.6	0.2 0.5 2.4 10.3 18.1 26.0 21.8 17.7 13.6	1.3 2.5 3.6 4.8 10.3 15.8 21.3	1.0 1.9 2.9 8.8 14.8 20.7	7.5 15.0 22.5	<u> </u>	<u> </u>	0.4		

表6 環境領域{(600≤G<800)∩(40≤Tm,K<50)}の尤度表

### 4.**仮説の検証**

最大出力低下率 *dc,src* が 0%から-19%までの尤度表が用意 に 10 個を選択したものである. できたところで,次は仮説の検証を試みる. #1 のデータ,表 6 の尤度家

## 4.1 PV モジュール Maを対象とした検証(例示)

表 7 は, PV モジュール M₈(*dc,src*=-11.5%)の 1,833 個の測 定値によって得た推定最大出力低下率 *d_A(G*∩*T_{m,K})から無作為* に 10 個を選択したものである.

#1 のデータ,表 6 の尤度表,そして「理由不十分の法則」 (P₀(d_{C,STC})=1/19)を用いて最初の試行を行う. PV モジュール

#	$G \left[ W/m^2 \right]$	$T_{m.K}[^{\circ}C]$	$d_A(G\cap T_{m,K})$
1	691	49.0	-9.2%
2	584	47.5	-9.2%
3	968	45.7	-13.7%
4	366	42.2	-12.2%
5	438	31.0	-10.7%
6	958	56.3	-10.7%
7	547	39.6	-12.2%
8	454	36.4	-6.9%
9	426	39.6	-9.2%
10	704	32.8	-11.5%

表7 無作為に選んだ PV モジュール M8 の dA(G ∩ Tm,K)

M₈に関して#1 が得られた場合の事後確率 P₁(*d*_{C,STC}|-9%≥*d*_A>-10%)(*d*_{C,STC}:全範囲)は次の式で計算する.

 $P_{1}(d_{C,STC}| - 9\% \ge d_{A} > -10\%) = \frac{P(-9\% \ge d_{A} > -10\%|d_{C,STC})P_{0}(d_{C,STC})}{\sum_{d_{C,STC}}P(-9\% \ge d_{A} > -10\%|d_{C,STC})P_{0}(d_{C,STC})}$ 

次に、この事後確率を事前確率とし、表7の#2のデータと表5の尤度表を用いて、第1回目と同様に第2回目の試行を行う.

このようにして表 7 のデータ群に関する全 10 回の試行で得られた事後確率 P_n(*d_{C,STC}*)(*n*:試行回数)を表 8 に示す.この場合には,89.5%の確からしさで PV モジュール M₈ は基準状態の最大出力低下率が「-11%以下かつ-12%超」と判定され,

*d_{C,STC}*=-11.5%と一致する. また, ±1 ポイントの誤差(-10%以下 かつ-13%超, つまり「±1.5 ポイントの誤差」)を許容すれば, 99.8%の確からしさでこの PV モジュールの *d_{C,STC}*と一致する.

#### 4.2 他の PV モジュールを対象とした検証

このような検証を、M₁(*dc.src*=0%), M₂(*dc.src*=0%), M₃ (*dc.src*=-4.7%), M₄(*dc.src*=-5.7%), M₅(*dc.src*=-8.2%), M₆ (*dc.src*=-10.5%), M₇(*dc.src*=-11.0%), M₈(*dc.src*=-11.5%), M₉ (*dc.src*=-11.8%)の PV モジュールのそれぞれに対して 60 回行 った場合の「判定基準=80%以上の確からしさ」かつ「±1.5 ポイ ントの誤差範囲で *dc.src* と一致する」頻度の割合を算出した結 果を表 9 に示す.

この表が示すように, *dc.src*>-11.0%である M₁, M₂, M₃, M₄, M₅, M₆の各 PV モジュールについては, 90%以上の割合で最大出力低下率を正しく判定した.

他方, *dc.src*≤-11%である M₇, M₈, M₉ の正判定割合はやや 低く, M₉ では 61.7%の低水準(10 回に 6 回程度しか正しい判 定ができない)にとどまった.

# 5. おわりに(本論文の総括)

この論文では、屋外で測定機会が複数回得られることを前 提に、ベイズ推定の考え方に依拠して、「200W/m²以上」の日 射強度条件と「20°C以上 60°C未満」の PV モジュール温度条 件のもとでの I-V 特性測定から、対象 PV モジュールの基準状 態における最大出力低下率を「ある確からしさ」で判定する方 法の仮説を提示し、その真偽の検証の途中経過を報告した. 検証にもちいた実測データはすべて茨城県つくば市で取得し

試行 (n)	1	2	3	4	5	6	7	8	9	10
$P_n(0\% \ge d_{C,STC} > -1\%)$	0.0%	-	-	-	-	-	-	-	-	-
$P_n(-1\% \ge d_{C,STC} > -2\%)$	0.0%-	-	-	-	-	-	-	-	-	-
$P_n(-2\% \ge d_{C,STC} > -3\%)$	0.0%	-	-	-	-	-	-	-	-	-
$P_n(-3\% \ge d_{C,STC} > -4\%)$	0.0%	-	-	-	-	-	-	-	-	-
$P_n(-4\% \ge d_{C,STC} > -5\%)$	0.0%	-	-	-	-	-	-	-	-	-
$P_n(-5\% \ge d_{C,STC} > -6\%)$	1.2%	0.0%	-	-	-	-	-	-	-	-
$P_n(-6\% \ge d_{C,STC} > -7\%)$	5.1%	2.3%	0.0%	-	-	-	-	-	-	-
$P_n(-7\% \ge d_{C,STC} > -8\%)$	8.9%	7.9%	0.0%	-	-	-	-	-	-	-
$P_n(-8\% \ge d_{C,STC} > -9\%)$	12.8%	17.0%	0.0%	-	-	-	-	-	-	-
$P_n(-9\% \ge d_{C,STC} > -10\%)$	13.9%	11.1%	0.2%	0.0%	-	-	-	-	-	-
$P_n(-10\% \ge d_{C,STC} > -11\%)$	15.1%	4.0%	0.2%	0.0%	-	-	-	-	-	-
$P_n(-11\% \ge d_{C,STC} > -12\%)$	16.1%	26.9%	54.7%	55.7%	57.4%	67.6%	65.6%	80.8%	85.5%	89.5%
$P_n(-12\% \ge d_{C,STC} > -13\%)$	10.9%	14.1%	29.0%	26.2%	24.1%	19.7%	20.6%	17.8%	13.8%	10.3%
$P_n(-13\% \ge d_{C,STC} > -14\%)$	5.9%	5.3%	11.0%	8.4%	6.8%	3.0%	3.4%	1.3%	0.6%	0.3%
$P_n(-14\% \ge d_{C,STC} > -15\%)$	0.7%	0.4%	0.8%	0.5%	0.4%	0.0%	-	-	-	-
$P_n(-15\% \ge d_{C,STC} > -16\%)$	0.4%	0.2%	0.4%	0.2%	0.1%	0.0%	-	-	-	-
$P_n(-16\% \ge d_{C,STC} > -17\%)$	0.2%	0.0%	-	-	-	-	-	-	_	-
$P_n(-17\% \ge d_{C,STC} > -18\%)$	0.0%	-	-	-	-	-	-	-	-	-
$P_n(-18\% \ge d_{C,STC} > -19\%)$	8.8%	10.8%	3.8%	8.9%	11.3%	9.7%	10.5%	0.0%	-	-

表 8 PV モジュール M8の表 7 のデータ群に関する各試行(n)後の事後確率 Pn(dc.src)

PV モジュール	頻度	割合
$M_1(d_{C,STC}=0\%)$	57 回/60 回	95.0%
M ₂ ( <i>dc,stc</i> =0%)	60 回/60 回	100%
M3 ( <i>dc,stc</i> =-4.7%)	60 回/60 回	100%
$M_4 (d_{C,STC}=-5.7\%)$	60 回/60 回	100%
M ₅ ( <i>d_{C,STC}</i> =-8.2%)	55 回/60 回	91.7%
M6 ( <i>dc</i> , <i>stc</i> =-10.5%)	58 回/60 回	96.7%
M7 ( <i>dc,stc</i> =-11.0%)	48 回/60 回	80.0%
M8 ( <i>dc,stc</i> =-11.5%)	48 回/60 回	80.0%
M9 ( <i>dc,stc</i> =-11.8%)	37 回/60 回	61.7%

表9 各 PV モジュールに対する試行の正判定 (判定基準:80%以上の確からしさ, 誤差:±1.5 ポイント)

たものであるが、この方法は日射強度とモジュール温度の二つ のみを屋外環境における条件としていることから、本質的には 地理的条件による適用制約はない、と筆者は考えている.

出力低下率の異なる 12 枚の PV モジュールの実測デー タを用いた検証の結果, M₁から M₆までの PV モジュール に関しては,比較的に高い割合で出力低下率を正しく判定 した.これは筆者が予想した通りである.なぜなら,それ らの出力低下率を推定するために用いた尤度表は,それら 自身の確率分布から得たものであるからである.他方, M₇ から M₉までの PV モジュールの正判定割合は,前者に比べ て低い割合となったが,これも筆者の予想の通りである. なぜなら,これらの出力低下率推定に用いた尤度表にはこ れらの確率分布の平均値を用いているからである.

しかし,現段階では筆者が提案する仮説が「真である」 とも「偽である」ともいえない.なぜなら,本論文で示し た検証はまだ途中の段階であり,真偽の結論を導出するに は、多様かつ多数の PV モジュールの I-V 測定データを取 得して結論導出に必要かつ十分な尤度表を作成されなけれ ばならないからである.別の表現をするならば、本仮説の 証明は「どれだけ適切な尤度表を用意することができるか」 にかかっている.

なお,本研究には改善を要することが少なくとも一つあ る. それは, 3.1 節で提示した「屋外で測定した電流-電圧 特性から基準状態の最大出力を換算する方法」の是非であ る. この方法は「既知モジュール K と対象モジュール Mi の I-V 特性には単純比例関係が保存されている」ことを前 提にしている. しかし,対象モジュールの出力低下率が大 きくなるほどに両者の単純比例関係が失われていく傾向が あることもわかっている.本論文で提案している方法をよ り広い出力低下率の範囲で適用可能とするためには,上記 の難点を克服できる推定方法の改善が必要である.

#### 参考文献

1)財団法人日本規格協会,結晶系太陽電池セル・モジュール屋外出 力測定方法(JISC 8919-1995)

2)太陽光発電技術研究組合 (PVTEC),屋外環境下における I-V 特 性測定方法ガイドライン (結晶シリコン太陽電池版)第一版,2016 年 12 月 15 日

3)Y.Hisikawa, T.Doi, M.Higa, K.Yamagoe and H.Ohshima, Precise Outdoor PV Module Performance Characterization Under Unstable Irradiance, IEEE J.Photovoltaics, Vol.6. No.5, 1221-1227 (2016)

4)加藤和彦,屋外で太陽電池モジュールの基準状態の最大出力を 判定する実用的方法の提案,太陽エネルギー, Vol.42, No.3, 73-84 (2016)

玛	霥境領域	N								$d_A$ (	$(G \cap T_m)$	,к) [	[%]							
G	$T_{m,K}$	IV	+6≥	>+5≥	2 >+	-4≥ >	+3≥	>+2≥	>+	-1≥ >	±0≥	>-12	≥ >·	-2≥	>-3≥	>-4≥	>-:	5≥	>-6≥	>-7
200	$20 \le T_{m,K} < 30$	46	2	2.2	2.2		15.	2 2	1.7	19.6	30.4	4	8.7				i			
$\leq G <$	$30 \le T_{m,K} < 40$	153	2	2.0	4.6	7.2	40.	5 3	4.6	5.9	3.9		0.7	0.7						
400	$40 \le T_{m,K} < 50$	55				1.8	40.	0 3	8.2	12.7	3.6			1.8						
400	$20 \le T_{m,K} < 30$	42			4.8	2.4				7.1	66.2	7	19.0							
$\leq G <$	$30 \le T_{m,K} < 40$	119		1.7	11.8	12.6	23.	5 1	1.8	7.6	25.2	?	5.0	0.8						
600	$40 \le T_{m,K} < 50$	134	(	0.7	3.0	8.2	30.	6 3	7.3	11.2	7.5		0.7	0.7		-				
600	$30 \le T_{m,K} < 40$	171			3.5	12.3	12.	9 2	2.9		24.0	5	42.7	1.2		-				
$\leq G <$	$40 \le T_{m,K} < 50$	214			2.8	5.6	28.	0 2	1.0	14.0	18.2	?	9.8	0.5						
800	$50 \le T_{m,K} < 60$	74				4.1	12.	2 2	1.6	13.5	40	5	8.1							
6	$30 \le T_{m,K} < 40$	51			2.0	2.0	3.9	9			7.8		78.4	3.9	2.0		i			
0≥ 800	$40 \le T_{m,K} < 50$	230	(	0.4	0.4	10.9	50.	0 1	0.9	3.0	8.7		13.0	0.9	1.3					
800	$50 \le T_{m,K} < 60$	381			0.3	2.9	13.	1 1	8.6	11.0	28.9	>	23.9	1.0		0.	3			

別表1 モジュール $M_2(d_{C,STC}=0\%)$ の $d_A(G\cap T_{m,K})$ の確率分布(N:各環境領域での取得データ数)

玛	環境領域	N								d	$_{4}(G\cap T)$	n,K) [	%]								
G	$T_{m,K}$	IV	+3≥	>±0≥	>-	1≥ >	-2≥	>-3≥	>-4	l≥ >	-5≥	>-6≥	>-7	'≥ >	>-8≥	>-9≥	>-1	0≥	>-1	l≥	>-15
200	$20 \le T_{m,K} < 30$	106					0.9	4.	7	7.5	7.5	11	.3	31.1	13.2	?	5.7	8	8.5	9.4	l
$\leq G <$	$30 \le T_{m,K} < 40$	166					2.4	31	.3	24.1	15.1	12	.0	10.8	2.4	(	).6	1	.2		
400	$40 \le T_{m,K} < 50$	90		1.1		4.4	8.9	53	.3	17.8	10.0	3.	3	1.1	-						
400	$20 \le T_{m,K} < 30$	98				3.1	3.1	15	.3	7.1	6.1	6.	1	31.6	11.2	? 1	0.2	Ć	<i>5.1</i>		
$\leq G <$	$30 \le T_{m,K} < 40$	85	1	.2	4.7	3.5	14.1	28	.2	8.2	8.2	8.	2	21.2	1.2		1.2				
600	$40 \leq T_{m,K} < 50$	128			7.8	23.4	22.7	37	.5	5.5	0.8	0.	8	0.8						0.8	}
600	$30 \le T_{m,K} < 40$	161			8.1	6.8	6.2	9.	9	9.9	13.0	14	.3	18.0	9.9		1.9	1	.9		
$\leq G <$	$40 \le T_{m,K} < 50$	150	0	.7 1	8.0	24.0	12.7	20	.7	4.7	2.0	7.	3	9.3	0.7						
800	$50 \le T_{m,K} < 60$	47		1	0.6	29.8	23.4	29	.8	4.3	2.1	-			-						
6	$30 \le T_{m,K} < 40$	206			8.3	1.9	1.0	4.	9	10.2	20.9	19	.9	27.7	5.3						
0≥ 800	$40 \le T_{m,K} < 50$	270	0	.7 2	21.9	6.7	6.3	12	.2	11.1	10.7	11	.1	15.9	2.6	(	).7				
800	$50 \le T_{m,K} < 60$	243	0	.4 2	27.2	32.9	18.9	16	.0	1.6	2.1	-		0.8							

別表2 モジュール M₃(*d*_{C,STC}=-4.7%)の *d_A*(G∩T_{m,K})の確率分布(N:各環境領域での取得データ数)

別表3 モジュール M₄(dc,src=-5.7%)の d_A(G∩T_{m,K})の確率分布(N:各環境領域での取得データ数)

琈	環境領域	N							$d_A (C$	$G\cap T_{m,K}$	[%]							
G	$T_{m,K}$	IV	-1≥ >	2≥ >	-3≥	>-4≥	>-5≥	>-	6≥ >	-7≥ >	-8≥	>-9≥	: >	-10≥	>-11	l≥ >	-12≥	>-19
200	$20 \le T_{m,K} < 30$	137					5	5.1	10.9	24.1	30.	7	13.1	7.	3	5.8		2.9
$\leq G <$	$30 \le T_{m,K} < 40$	102		2.0	-	11	.8 2.	3.5	13.7	25.5	14.	7	5.9	2.0	0		}	1.0
400	$40 \le T_{m,K} < 50$	81		1.2	1.2	25	.9 3	8.3	17.3	11.1	2	5	2.5	-			!	
400	$20 \le T_{m,K} < 30$	165		1.8	1.8	0.	6 1	7.6	21.2	33.3	16.	4	4.8	1.	2	0.6		0.6
$\leq G <$	$30 \le T_{m,K} < 40$	181		1.7	2.2	8.	8 1.	2.7	9.4	29.3	19.	9	12.7	1.	1	1.1	-	1.1
600	$40 \le T_{m,K} < 50$	102		3.9	6.9	36	.3 2	3.5	9.8	14.7	3.9	2		1.0	0		-	
600	$30 \le T_{m,K} < 40$	241	0.8	1.7	0.4	4.	6 2	7.0	12.4	40.7	10.	8	1.2	1	-	0.4		
$\leq G <$	$40 \le T_{m,K} < 50$	193	1.0	6.7	6.7	11	.9 1	5.0	10.9	32.6	13.	5	1.6					
800	$50 \le T_{m,K} < 60$	147		0.7	1.4	43	.5 3.	2.0	7.5	12.9	2.0	)					- - -	
6	$30 \le T_{m,K} < 40$	510		0.6	0.2	6.	3 3	4.7	12.2	30.6	13.	3	2.0			0.2	, , ,	
0≥ 800	$40 \le T_{m,K} < 50$	394	0.8	3.6	1.5	4.	3 2	8.2	11.2	30.5	16.	2	3.6	0	3		:	
300	$50 \le T_{m,K} < 60$	227	0.4	10.6	5.7	5.	7 2	2.9	5.7	17.2	25.	6	6.2					

別表4 モジュール M₅(*d*_{C,STC}=-8.2%)の*d*_A(G∩T_{m,K})の確率分布(N:各環境領域での取得データ数)

玛	環境領域	N								$d_A$	$(G \cap T)$	m,K) [	%]								
G	$T_{m,K}$	IV	-4≥	>-6≥	>-7	7≥ >-	8≥ >	-9≥	>-10	≥ >-	11≥	>-12≥	>-]	3≥ >	-14≥	>-152	≥ >-	16≥	>-17	7≥	>-20
200	$20 \le T_{m,K} < 30$	136				0.7	1.5	6.	6	11.8	29.4	1	5.4	9.6	1.	3.2	3.7	2.	9	5.1	
$\leq G <$	$30 \le T_{m,K} < 40$	261		(	0.8	1.9	10.0	37.	5	19.5	17.2		7.3	3.8	1	.9		-			
400	$40 \le T_{m,K} < 50$	64				7.8	17.2	54.	7	7.8	9.4			3.1							
400	$20 \le T_{m,K} < 30$	69						10.	1	5.8	15.9	ć	8.7	23.2	20	6.1					
$\leq G <$	$30 \le T_{m,K} < 40$	255			2.7	7.1	11.8	4.1	6	10.2	17.3		5.9	1.6	1	.6		0.	4		
600	$40 \le T_{m,K} < 50$	176		1	7.0	30.1	23.9	23.	3	4.0	1.1				0	.6					
600	$30 \le T_{m,K} < 40$	204			2.9	5.4	9.8	20.	1	15.2	31.4	1	1.3	3.4	0	.5		-			
$\leq G <$	$40 \le T_{m,K} < 50$	198	i	1.5 3	3.3	21.7	17.7	17.	2	5.6	3.0										
800	$50 \le T_{m,K} < 60$	78		5	6.4	24.4	12.8	6.	4						-						
Ć	$30 \le T_{m,K} < 40$	149	6	0.7	2.0	1.3		6.	7	20.8	45.0	1	6.1	6.0	1	.3		į			
0≥ 800	$40 \le T_{m,K} < 50$	266		2	2.9	22.2	16.5	22.	2	8.6	7.5										
800	$50 \le T_{m,K} < 60$	328	7	7.6 7	4.1	11.6	4.3	2.	4												

琈	霥境領域	N										$d_A$	$(G \cap T)$	n,K)	[%]								
G	$T_{m,K}$	IV	-2≥	>-4	4≥ :	>-5≥	>-62	2 >-	-7≥	>-8	3≥	>-9	)≥	>-10≥	>-	11≥	>-12	≥	>-13≥	>-	14≥	>-15≥	>-16
200	$20 \le T_{m,K} < 30$	143				- 1	.4	2.8	31	.5	40.	6	16.1		2.1	2	.1	2.8	3 (	).7	}		
$\leq G <$	$30 \le T_{m,K} < 40$	105			6.7	12	2.4	8.6	33	.3	26.	7	6.7		1.9	3	.8				!		
400	$40 \le T_{m,K} < 50$	79		2.6	31.6	41	.8	10.1	6.	3	7.0	5											
400	$20 \le T_{m,K} < 30$	94				1	1		8.	5	44.	7	38.3		2.1	4	.3			1.1	1		
$\leq G <$	$30 \le T_{m,K} < 40$	191				3	7	3.7	24	.1	35.	1	26.7		1.6	3	.7	1.6	5		:		
600	$40 \le T_{m,K} < 50$	107		0.9	19.6	27	7.1	12.1	19	.6	15.	0	4.7			0	.9				-		
600	$30 \le T_{m,K} < 40$	252				0	.4	0.8	8.	7	31.	3	36.5		10.3	7	.9	2.8	3 (	).4	0.	8	
$\leq G <$	$40 \le T_{m,K} < 50$	217			1.4	4	1	3.2	16	.1	40.	6	20.3		5.5	6	.9	1.4	t		0.	5	
800	$50 \le T_{m,K} < 60$	156		0.6	7.7	32	2.1	14.7	23	.7	16.	0	4.5		0.6						!		
6	$30 \le T_{m,K} < 40$	184							0.	5	18.	5	37.0		14.7	12	7.4	9.8	3	1.1	1.	1	
0≥ 800	$40 \le T_{m,K} < 50$	419				0	.2	0.2	2.	6	32.	9	37.5		10.3	- 1	.7	4.1	(	).2	!	0.	2
800	$50 \le T_{m,K} < 60$	245			1.2	2	9	7.3	24	.1	32.	2	21.2		4.1	4	.5	2.0	) (	).4			

別表5 モジュール M₆(d_{C,STC}=-10.5%)の d_A (G∩T_{m,K})の確率分布 (N:各環境領域での取得データ数)

別表6 モジュール M₇(d_{C,STC}=-11.0%)の d_A (G∩T_{m,K})の確率分布 (N:各環境領域での取得データ数)

玛	環境領域	N								$d_A$ (	$G\cap I$	$T_{m,K}$ [9	6]								
G	$T_{m,K}$	IV	-6≥	>-7	/≥ >-	-8≥	>-9≥	>-10	≥ >-1	1≥	>-1	2≥ >-	13≥	>-	14≥	>-15≥	>-	16≥	>-1	17≥	>-20
200	$20 \le T_{m,K} < 30$	136			2.2	13.2	2 39	9.7	22.1	14	.7	5.9	0.	7		0	.7			0.7	
$\leq G <$	$30 \le T_{m,K} < 40$	127			5.5	22.8	8 44	4.9	10.2	13	.4	3.1						, , ,			
400	$40 \le T_{m,K} < 50$	63		9.5		34.9	3.	3.3	4.8	6.	3				1.6						
400	$20 \le T_{m,K} < 30$	124		9.5 9 1 1.6 2		23.4	4 5.	5.6	11.3	5.	6	2.4						1			
$\leq G <$	$30 \le T_{m,K} < 40$	127		9.5 9.3 1.6 1.6 2.4		23.0	5 3.	3.1	15.0	17	'.3	6.3	0.	8				1 1 1	1		
600	$40 \le T_{m,K} < 50$	131		0.8	6.9	20.0	5 22	2.9	12.2	17	<i>.</i> .6	15.3	3.	8							
600	$30 \le T_{m,K} < 40$	177				1.1	19	9.2	23.2	39	0.0	16.4	1.	1							
$\leq G <$	$40 \le T_{m,K} < 50$	162			1.9	1.9	1	1.1	16.0	20	0.4	16.0	25	.3	4.3	3	.1				
800	$50 \le T_{m,K} < 60$	110				11.8	8 1	1.8	16.4	21	.8	20.9	13	.6	2.7	0	.9				
6	$30 \le T_{m,K} < 40$	287				1   	0	.7	4.5	30	.3	39.7	19	.5	3.5	1	.7		1		
0≥ 800	$40 \le T_{m,K} < 50$	365				-	0	.3	2.2	22	.2	37.3	20	.0	6.8	8	.8	1.	6	0.8	
800	$50 \le T_{m,K} < 60$	235							0.9	19	9.1	31.9	14	.5	6.4	17	7.9	7.	7	1.7	

別表7 モジュール M₈(*d*_{C,STC}=-11.5%)の *d_A*(G∩T_{m,K})の確率分布(N:各環境領域での取得データ数)

琈	霥境領域	N							C	$d_A (G \cap Z)$	Т _{т,К} ) [%	6]					
G	$T_{m,K}$	IV	-5≥	>-7≥	>-8	≥ >-	9≥ >	-10≥	>-11≥	≥ >-1	2≥ >-	13≥ >-	14≥ >-	15≥	>-16≥ >	-17≥	>-22
200	$20 \le T_{m,K} < 30$	145			i		0.7	4.8	3	4.8	8.3	29.7	17.9	11.7	12.4	9.7	
$\leq G <$	$30 \le T_{m,K} < 40$	93	1.	1 3	.2	6.5	22.6	15.	1	6.5	17.2	12.9	4.3	1.1		-	
400	$40 \le T_{m,K} < 50$	44	2.	32	.3	2.3	40.9	15.	9	18.2	6.8	6.8	2.3	1 1 1	2.3	-	
400	$20 \le T_{m,K} < 30$	122				3.3	11.5	16.	4	23.8	13.1	25.4	4.1		1.6	0.8	
$\leq G <$	$30 \le T_{m,K} < 40$	133	1.	53	.0	5.3	27.8	12.	8	20.3	11.3	12.8	1.5	3.0		0.8	
600	$40 \le T_{m,K} < 50$	92	7.	6 8	.7	20.7	38.0	12.	0	6.5	3.3	2.2	1.1			!	
600	$30 \le T_{m,K} < 40$	195	1.	5 3	.6	6.2	28.7	17.	4	19.5	12.8	8.2	1.5	1	0.5	-	
$\leq G <$	$40 \le T_{m,K} < 50$	128	7.	1 7	.0	21.9	34.4	7.0	)	6.3	7.0	7.0	1.6	0.8			
800	$50 \le T_{m,K} < 60$	43	9.	3 2	7.9	32.6	20.9	7.0	)	2.3							
6	$30 \le T_{m,K} < 40$	260	0.	4 4	.6	7.3	35.8	17.	3	16.2	10.8	6.9	0.4		0.4		
0≥ 800	$40 \le T_{m,K} < 50$	326	4.	9 8	.0	3.7	26.7	14.	7	12.3	13.2	12.9	1.8	1.2	0.6		
000	$50 \le T_{m,K} < 60$	252	4.	8 4	.8	16.3	40.5	17.	1	7.1	3.6	4.8	0.8		0.4	-	

玛	霥境領域	N								$d_A$ (Gf	$T_{m,K}$	[%]							
G	$T_{m,K}$	11	-5≥	>-7	≥ >-	8≥ >-	-9≥	>-10≥	>-11	l≥ >-	12≥	>-13	≥ >-	14≥ :	>-15≥	>-	16≥	>-17≥	>-20
200	$20 \le T_{m,K} < 30$	136							0.7	14.7	18.	4	25.0	15.4	18	8.4	3.7	3.	7
$\leq G <$	$30 \le T_{m,K} < 40$	89			9.0	10.1	16.9	9	16.9	21.3	12.	4	6.7	2.2	4	.5			
400	$40 \le T_{m,K} < 50$	46	2	2.2	21.7	15.2	28	3	15.2	10.9	4.3		2.2	1					
400	$20 \le T_{m,K} < 30$	114				1	7.9		6.1	38.6	21.	1	18.4	4.4	2	.6	0.9		
$\leq G <$	$30 \le T_{m,K} < 40$	131	6	).8	2.3	4.6	6.1		6.9	46.6	20.	6	9.9	2.3					
600	$40 \le T_{m,K} < 50$	97	Ĵ	8.1	25.8	27.8	26.8	8	9.3	6.2			1.0	1					
600	$30 \le T_{m,K} < 40$	189			1.1	1.6	13.8	8	19.0	34.9	17.	5	6.3	4.8	1	.1			
$\leq G <$	$40 \le T_{m,K} < 50$	144	4	1.9	29.2	12.5	19.4	4	9.0	13.2	8.3		2.1	1.4					
800	$50 \le T_{m,K} < 60$	42	7	7.1	45.2	40.5	2.4		2.4	2.4					-				
6	$30 \le T_{m,K} < 40$	249			1.2	8.8	12.4	4 2	28.9	32.5	10.	8	4.4		0	.4	0.4		
0≥ 800	$40 \le T_{m,K} < 50$	333	2	2.7	3.0	7.5	17.4	4	17.4	27.6	17.	7	5.7	0.9					
800	$50 \le T_{m,K} < 60$	264	5	.3	26.5	25.8	16.	3	13.3	7.6	4.2	?	1.1						

別表8 モジュール M₉(*d*_{C,STC}=-11.8%)の*d_A(G*∩*T_{m,K})の確率分布(N*:各環境領域での取得データ数)

別表9 モジュール  $M_{10}(d_{C,STC}=-14.2\%)$ の  $d_A(G\cap T_{m,K})$ の確率分布 (N:各環境領域での取得データ数)

玛	環境領域	N								$d_A$ (C	$G \cap I$	[m,K) [%	6]							
G	$T_{m,K}$	IV	-7≥	>-8	≥ >	-9≥	>-10≥	>-112	≥ >-12	2≥	>-13	3≥ >-	14≥	>-1	5≥ >-	16≥	>-17	7≥	>-18≥	>-21
200	$20 \le T_{m,K} < 30$	64				4.7	1	7.2	48.4	15.	6	6.3	4.7	7		1.6	1	1.6		
$\leq G <$	$30 \le T_{m,K} < 40$	119			0.8	25.2	2 3.	3.6	28.6	5.9	)	4.2	1.7	7		1				
400	$40 \le T_{m,K} < 50$	42		4.8 2.4		38.	1 28	8.6	23.8	2.4	¢									
400	$20 \le T_{m,K} < 30$	40					-		12.5	12.	5	30.0	32.	5	2.5	2.5		2.5	5.	)
$\leq G <$	$30 \le T_{m,K} < 40$	114	(	0.9	1.8	4.4	7	.9	30.7	15.	8	15.8	18.	4	3.5	0.9				
600	$40 \le T_{m,K} < 50$	90				8.9	1	5.6	50.0	12.	2	8.9	4.4	4						
600	$30 \le T_{m,K} < 40$	103				1.0			3.9	9.7	7	10.7	46.	6	14.6	7.8		3.9	2.	)
$\leq G <$	$40 \le T_{m,K} < 50$	104			1.0	1.0	4	.8	11.5	26.	0	22.1	26.	0	4.8	2.9				
800	$50 \le T_{m,K} < 60$	50				-	2	.0	24.0	22.	0	12.0	36.	0	2.0	2.0				
6	$30 \le T_{m,K} < 40$	45								1 1 1		4.4	33.	3	26.7	26.	7	6.7	2.	2
0≥ 800	$40 \le T_{m,K} < 50$	76							6.6	19.	7	13.2	43.	4	9.2	5.3		1.3	1.	3
800	$50 \le T_{m,K} < 60$	143					0	.7	18.9	22.	4	30.1	23.	8	0.7	1.4		2.1		

別表 10 モジュール  $M_{11}(d_{C,STC}=-17.1\%)$ の  $d_A(G\cap T_{m,K})$ の確率分布 (N:各環境領域での取得データ数)

玛	霥境領域	N								$d_A$ (G	$\cap T_{m,.}$	_K ) [%]							
G	$T_{m,K}$	IV	<b>-</b> 10≥	>12	≥ >-1	3≥	>-14≥	>-1	5≥ >-	16≥ :	>-17≥	≥ >-1	8≥ >	-19≥	>-20	≥ >-2	21≥ >	-22≥	>-25
200	$20 \le T_{m,K} < 30$	81		i	4.9	7.4	2	8.4	14.8	12.3		7.4	7.4	4	9	7.4	4.9	į	
$\leq G <$	$30 \le T_{m,K} < 40$	244				3.3	2	8.7	23.4	21.3		15.6	3.3	3.	3	1.2	-		
400	$40 \le T_{m,K} < 50$	62				3.2	2 4	6.8	16.1	14.5		14.5	1.6	1.	6	1.6			
400	$20 \le T_{m,K} < 30$	65		1.5	1.5	1.5	1	0.8	6.2	4.6		15.4	15.4	15	.4	16.9	6.2	4.	5
$\leq G <$	$30 \le T_{m,K} < 40$	139	(	0.7	0.7	5.8	3 2	5.9	16.5	15.8		26.6	5.8	0.	7	1.4			
600	$40 \le T_{m,K} < 50$	116		2.6	1.7	2.6	i 2	5.9	22.4	19.0		20.7	0.9	3	4	0.9	1		
600	$30 \le T_{m,K} < 40$	156			1.9	5.1		9.0	5.8	16.0		25.0	12.2	7.	1	13.5	0.6	3.0	8
$\leq G <$	$40 \le T_{m,K} < 50$	169	(	0.6	7.7	3.6	5 1	3.6	21.3	20.7	·	22.5	4.1	3.	6	1.2	0.6	0.0	6
800	$50 \le T_{m,K} < 60$	55				3.6	í j	4.5	23.6	18.2		12.7	5.5	1.	8				
6	$30 \le T_{m,K} < 40$	159				1.3		8.2	3.1	4.4		20.8	18.2	22	2.0	18.9	3.1	i	
0≥ 800	$40 \le T_{m,K} < 50$	266			3.0	10.	2 1	5.4	13.9	17.3		27.8	6.4	3.	8	2.3			
800	$50 \le T_{m,K} < 60$	255		2.8	4.3	3.5	1	9.6	14.1	23.5		25.9	4.3	1.	.6	0.4			

璒	環境領域	N									$d_A$ (	$G \cap T_m$	, <i>K)</i>	[%]									
G	$T_{m,K}$	IV	-8≥	>-1	0≥	>-11≥	>-12	≥ >	-13≥	>-1	14≥ >	-15≥	>-1	6≥	>-17≥	: >	-18≥	>-19	)≥ ;	>-20≥	>-2	21≥	>-22
200	$20 \le T_{m,K} < 30$	125		4.8	4.0	1	.2	12.8	11.	.2	16.0	12.8	8	13.6		8.0	4.8	3	0.8				
$\leq G <$	$30 \le T_{m,K} < 40$	209	2	0.6	24.9	2 20	0.1	15.8	6.	2	4.8	1.9	)	1.0	-	0.5							
400	$40 \le T_{m,K} < 50$	70	3.	2.8	27.1	1 2	1.4	8.6	2.	9	1.4	2.9	)							-			
400	$20 \le T_{m,K} < 30$	41							4.	9		7.3		7.3	2	22.0	31.	7	14.6	12	2		
$\leq G <$	$30 \le T_{m,K} < 40$	134	1	3.4	14.2	2 6	.7	9.7	6.	7	9.7	5.2		6.0		9.7	6.7	7	3.7	0.7			
600	$40 \le T_{m,K} < 50$	149	2	2.2	14.8	8 2	1.5	16.8	12	.8	8.1	0.7	,	1.3		1.3	0.7	7					
600	$30 \le T_{m,K} < 40$	73		4.1	1.4	4	.1	2.7	1.	4	2.7	4.1		13.7	1	6.4	23.	3	13.7	11.	)	1.4	
$\leq G <$	$40 \le T_{m,K} < 50$	177	1	5.8	7.9	14	4.7	10.2	11.	.3	14.1	4.0	)	0.6		5.6	9.0	)	4.5	2.3			
800	$50 \le T_{m,K} < 60$	80		7.5	3.8	1.	5.0	17.5	21	.3	26.3	5.0	)	2.5		1.3				-			
6	$30 \le T_{m,K} < 40$	37				2	.7	2.7				2.7	7	5.4	2	21.6	10.	8	18.9	32	4	2.7	
G≥ 800	$40 \le T_{m,K} < 50$	179		1.1	1.7	2	.2	0.6	2.	2	7.8	1.1		5.0		1.7	20.	1	25.1	20.	1	1.1	
800	$50 \le T_{m,K} < 60$	277		4.0	7.6	6	.1	17.7	24	.5	31.0	6.9		1.4	1	0.7							

別表 11 モジュール M₁₂(*d_{C,STC}=-*18.0%)の *d_A*(*G*∩*T_{m,K})の確率分布*(*N*:各環境領域での取得データ数)

$d \Rightarrow$	6> >	5> >4	>32	> >	.2>	1>	>0>	>-	1> >-	>>>>	-3>	>-4>	>-5	>	>-6>	>-72	>	>-8
0 <da<1< td=""><td>11</td><td></td><td>28</td><td>151</td><td>2 27 4</td><td>20</td><td></td><td>23.9</td><td>67</td><td>12</td><td>- 0</td><td>4</td><td>0.4</td><td>-</td><td></td><td>  /</td><td>-</td><td>2.0</td></da<1<>	11		28	151	2 27 4	20		23.9	67	12	- 0	4	0.4	-		/	-	2.0
-1 <d-<-?< td=""><td>0.0</td><td>0.0</td><td>2.0</td><td>11.1</td><td>20.6</td><td>15</td><td>0</td><td>18.0</td><td>51</td><td>1.2</td><td>1</td><td>5</td><td>2.2</td><td>10</td><td></td><td>20</td><td>7.8</td><td>,</td></d-<-?<>	0.0	0.0	2.0	11.1	20.6	15	0	18.0	51	1.2	1	5	2.2	10		20	7.8	,
-1_uc<-2	0.5	0.5	1.1	7.6	13.7	10		12.0	3.1	1.2	2	6	4.0	3.8		57	157	6
-2_uc<-3	0.0	0.0	0.7	3.8	6.9	5	0	6.0	17	1.1	3	7	5.8	5.0		2.5	23.4	1
-J_uc-4	0.5	0.5	0.7	5.0	0.7			0.0	1.7	0.0	1	7	7.5	7.5	1	13	31	1
-1_u(<-5						+				0.7	7.		7.5	5.1	1	0.9	24	1
-6 <dc<-7< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.4</td><td></td><td>73</td><td>16 :</td><td>3</td></dc<-7<>														3.4		73	16 :	3
-7 <dc<-8< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>1.7</td><td></td><td>36</td><td>8 5</td><td></td></dc<-8<>											-			1.7		36	8 5	
-8 <dc<-9< td=""><td></td><td></td><td></td><td></td><td></td><td>+</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.7</td><td>,</td></dc<-9<>						+	+										0.7	,
-9 <dc<-10< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.7</td><td></td><td>.4</td><td>16.1</td><td>1</td></dc<-10<>														0.7		.4	16.1	1
-10 <dc<-11< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td>1.4</td><td></td><td>2.8</td><td>31.5</td><td>5</td></dc<-11<>									<u> </u>					1.4		2.8	31.5	5
-11≤d _C <-12					1				<u>;</u>				i				0.7	,
-12≤d _C <-13											-						0.5	
-13≤d _C <-14																	0.2	
<i>-14≤d</i> _C <-15						1										+		
-15≤d _C <-16									1									
<i>-16≤d</i> _C <-17									1			İ						
-17≤d _C <-18																		
<i>-18≤d</i> _C <-19																		
$d_A \Rightarrow$	-8≥ >-	9≥ >-1	0≥ >-11	≥ >-	12≥ >-	-13≥	>-14≥	: >-1	5≥ >-1	6≥ >-	17≥	>-18≥	: >-19	)≥ ;	>-20≥	>-21	≥	>-22
$0 \leq d_C < 1$				1									-	1				
-1≤d _C <-2	3.3	1.5	2.2	0.7	1.0	0.	5	0.3										
-2≤d _C <-3	6.6	2.9	4.3	1.4	1.9	1.	0	0.5										
<i>-3≤d</i> _C <-4	9.9	4.3	6.4	2.1	2.9	1.	5	0.7										
<i>-4≤d</i> _C <-5	13.2	5.7	8.5	2.8	3.8	1.	9	0.9										
<i>-5≤d</i> _C <-6	30.7	13.1	7.3	5.8	1.5	0.	7						0.7					
<i>-6≤d</i> _C <-7	21.0	10.9	8.8	13.7	6.1	3.	7	4.4	1.2	1.0	1.	0	1.0	0.2				
-7 <i>≤</i> d _C <-8	11.2	8.8	10.3	21.5	10.8	6.	6	8.8	2.5	1.9	1.	9	1.2	0.5				
-8≤d _C <-9	1.5	6.6	11.8	29.4	15.4	9.	6	13.2	3.7	2.9	2.	9	1.5	0.7				
-9≤dc<-10	21.1	11.4	7.0	15.8	9.1	5.	2	6.6	1.9	1.5	1.	5	0.8	0.4				
-10≤d _C <-11	40.6	16.1	2.1	2.1	2.8	0.	7				<u> </u>							
-11≤d _C <-12	4.4	13.5	9.2	11.4	10.8	18	8.5	11.1	10.3	5.4	2.	3	0.9	0.7		0.5	0.2	?
<i>-12≤d_C&lt;-13</i>	2.9	10.6	11.9	23.7	12.4	14	.4	9.0	6.9	4.1	2.	1	0.6	0.5		0.3	0.1	1
<i>-13≤d</i> _C <-14	1.5	7.6	14.5	36.1	14.0	10	).4	6.8	3.4	2.9	1.	8	0.3	0.2		0.2	0.1	!
<i>-14≤d</i> _C <-15		4.7	17.2	48.4	15.6	6.	3	4.7		1.6	1.	6						
-15≤dc<-16		3.1	11.5	32.3	12.0	6.	7	12.6	4.9	5.2	3.	5	2.5	1.6		2.5	1.6	5
<i>-16≤d</i> _C < <i>-</i> 17		1.6	5.7	16.1	8.5	7.	0	20.5	9.9	8.7	5.	5	4.9	3.3		4.9	3.3	}
-17≤d _C <-18					4.9	7.	4	28.4	14.8	12.3	7.	4	7.4	4.9		7.4	4.9	)
<i>-18≤d</i> _C <-19	0.8	4.0	4.0	11.2	12.8	11	.2	16.0	12.8	13.6	8.	0	4.8	0.8				

別表 12 環境領域{(200≤G<400)∩(20≤Tm,K<30)}の尤度表

$d_A \Rightarrow$	6≥ >	-5≥ >4	4≥ >3	3≥ >2	2≥ >	1≥ >	>0≥ >	-1≥ >	-2≥ >-	-3≥ >-	4≥ >-	-5≥ ⇒	>-6≥	>-7≥	>-8
$0 \leq d_C < 1$	1.0	2.3	10.6	25.9	29.6	6.8	7.9	8.8	4.2	2.5					
-1≤d _C <-2	0.8	1.8	8.0	19.5	22.2	5.1	6.0	6.6	3.8	9.7	6.0	3.8	3.0		2.7
-2≤d _C <-3	0.5	1.2	5.3	13.0	14.8	3.4	4.0	4.0	3.3	16.9	12.0	7.5	6.0	)	5.4
<i>-3≤d</i> _C <-4	0.3	0.6	2.7	6.5	7.4	1.7	2.0	2.0	2.9	24.1	18.0	11.3	9.0		8.1
-4≤d _C <-5									2.4	31.3	24.1	15.1	12.	0 1	0.8
-5≤d _C <-6									2.0		11.8	23.5	13.	7 2	5.5
-6≤d _C <-7		1							1.3		7.8	15.7	9.4	t 1	7.6
-7 <i>≤</i> d _C <-8		-							0.7		3.9	7.8	5.1		9.8
-8 <i>≤</i> d _C <-9													0.8	3	1.9
-9≤d _C <-10				1							3.3	6.2	4.7	7 1	7.6
-10≤d _C <-11											6.7	12.4	8.6	5 9	9.8
-11≤d _C <-12				1									0.4	1	1.9
<i>-12≤d_C&lt;-13</i>						1							0.3	3 1	7.6
<i>-13≤d</i> _C <-14													0.1	3	3.3
-14≤d _C <-15															5.9
-15≤d _C <-16															3.9
<i>-16≤d_C&lt;-17</i>				1											2.0
<i>-17≤d_C&lt;-18</i>															
-18 <dc<-19< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dc<-19<>			1												
10=0(11)				l					1		i	1			
$d_A \Rightarrow$	-8≥ >	-9≥ >-1	10≥ >-1	1≥ >-1	2≥ >-	13≥ >-	-14≥ >-	15≥ >-	16≥ >-	17≥ >-3	18≥ >-	19≥ >	-20≥	>-21≥	>-22
$\frac{d_A \Rightarrow}{0 \le d_C < -1}$	-8≥ >	-9≥ >-1	0≥ >-1	1≥ >-1	2≥ >-1	13≥ >-	·14≥ >-	15≥ >-	16≥ >-	17≥ >-3	18≥ >-	19≥ >	-20≥	>-21≥	>-22
$\begin{array}{c} d_{A} \Rightarrow \\ \hline 0 \leq d_{C} < -1 \\ \hline -1 \leq d_{C} < -2 \end{array}$	-8≥ > 0.6	-9≥ >-1 0.2	0≥ >-1 0.3	1≥ >-1	2≥ >-	13≥ >	·14≥ >-	15≥ >-	16≥ >-	17≥ >-	18≥ >-	19≥ >	-20≥	>-21≥	>-22
$\frac{d_A \Rightarrow}{0 \le d_C <-1}$ $\frac{-1 \le d_C <-2}{-2 \le d_C <-3}$	-8≥ > 0.6 1.2	-9≥ >-1 0.2 0.3	0.3 0.6	12 >-1	2≥ >-:	13≥ >	142 >-	15≥ >-	16≥ >-	17≥ >-:	18≥ >-	19≥ >	20≥	>-21≥	>-22
$\begin{array}{c} d_{A} \Rightarrow \\ \hline 0 \leq d_{C} < -1 \\ \hline -1 \leq d_{C} < -2 \\ \hline -2 \leq d_{C} < -3 \\ \hline -3 \leq d_{C} < -4 \end{array}$	-8≥ >> 0.6 1.2 1.8	-9≥ >-1 0.2 0.3 0.5	0≥ >-1 0.3 0.6 0.9	12 >-1	2≥ >-:	13≥ >-	.142 >-	15≥ >-	16≥ >-	17≥ >-:	18≥ >-	19≥ >	-20≥	>-21≥	>-22
$\begin{array}{c} d_{A} \Rightarrow \\ \hline 0 \leq d_{C} < -1 \\ \hline -1 \leq d_{C} < -2 \\ \hline -2 \leq d_{C} < -3 \\ \hline -3 \leq d_{C} < -4 \\ \hline -4 \leq d_{C} < -5 \end{array}$	-8≥ > 0.6 1.2 1.8 2.4	-9≥ >-1 0.2 0.3 0.5 0.6	0≥ >-1 0.3 0.6 0.9 1.2	112 >-1	2≥ >	13≥ >-	142 >	15≥ >-	16≥ >-	17≥ >->	18≥ >-	19≥ >	-20≥	>-21≥	>-22
$\begin{array}{c} d_{A} \Rightarrow \\ \hline 0 \leq d_{C} < 1 \\ \hline -1 \leq d_{C} < 2 \\ \hline -2 \leq d_{C} < -3 \\ \hline -3 \leq d_{C} < < 4 \\ \hline -4 \leq d_{C} < -5 \\ \hline -5 \leq d_{C} < -6 \end{array}$	-8≥ >> 0.6 1.2 1.8 2.4 14.7	-9≥ >-1 0.2 0.3 0.5 0.6 5.9	$ 0\geq >-1$ 0.3 0.6 0.9 1.2 2.0	1≥ >-1	22 >	13≥ >> 	142 >-	15≥ >-	16≥ >-	172 >	18≥ >-	192 >	-20≥	>-21≥	>-22
$\begin{array}{c} d_{A} \Rightarrow \\ \hline 0 \leq d_{C} <-1 \\ \hline -1 \leq d_{C} <-2 \\ \hline -2 \leq d_{C} <-3 \\ \hline -3 \leq d_{C} <-4 \\ \hline -4 \leq d_{C} <-5 \\ \hline -5 \leq d_{C} <-6 \\ \hline -6 \leq d_{C} <-7 \end{array}$	-8≥ > 0.6 1.2 1.8 2.4 14.7 13.1	-92 >-1 0.2 0.3 0.5 0.6 5.9 16.4	0≥ >-1 0.3 0.6 0.9 1.2 2.0 7.8	5.7	2≥ >- 2.4	13≥ >- 	14≥ > 0.6		162 >-	172 >		192 >	-20≥	>-21≥	>-22
$\begin{array}{c} d_{A} \Rightarrow \\ \hline \\ 0 \leq d_{C} < 1 \\ \hline \\ -1 \leq d_{C} < 2 \\ \hline \\ -2 \leq d_{C} < -3 \\ \hline \\ -3 \leq d_{C} < -4 \\ \hline \\ -4 \leq d_{C} < -5 \\ \hline \\ -5 \leq d_{C} < -6 \\ \hline \\ -6 \leq d_{C} < -7 \\ \hline \\ -7 \leq d_{C} < -8 \end{array}$	-8≥ >> 0.6 1.2 1.8 2.4 14.7 13.1 11.5	-92         >-1           0.2         0.3           0.5         0.6           5.9         16.4           27.0         27.0	0≥ >-1 0.3 0.6 0.9 1.2 2.0 7.8 13.7	5.7 11.5	2≥ > 	13≥ >> 13≥  >> 1.0 1.9 2.9	1.14≥ > 0.6 1.3		116≥ >-	172 >-1		19≥ >	20≥   	>-21≥	>-22
$\begin{array}{c} d_{A} \Rightarrow \\ \hline 0 \leq d_{C} < -1 \\ \hline -1 \leq d_{C} < -2 \\ \hline -2 \leq d_{C} < -3 \\ \hline -3 \leq d_{C} < -4 \\ \hline -4 \leq d_{C} < -5 \\ \hline -5 \leq d_{C} < -6 \\ \hline -6 \leq d_{C} < -7 \\ \hline -7 \leq d_{C} < -8 \\ \hline -8 \leq d_{C} < -9 \end{array}$	-8≥ > 0.6 1.2 1.8 2.4 14.7 13.1 11.5 10.0	9.92         >-1           0.2         0.3           0.5         0.6           5.9         16.4           27.0         37.5	0≥ >-1 0.3 0.6 0.9 1.2 2.0 7.8 13.7 19.5	5.7 11.5 17.2	2≥ > 2.4 4.9 7.3	13≥ >- 13≥  >- 1.0 1.9 2.9 3.8	1.14≥         >-           0.6         1.3           1.9         1.9	15≥ >-		172 >-1		192 >	-20≥	>-21≥	>-22
$\begin{array}{c} d_{A} \Rightarrow \\ \hline 0 \leq d_{C} < -1 \\ \hline -1 \leq d_{C} < -2 \\ \hline -2 \leq d_{C} < -3 \\ \hline -3 \leq d_{C} < -4 \\ \hline -4 \leq d_{C} < -5 \\ \hline -5 \leq d_{C} < -6 \\ \hline -6 \leq d_{C} < -7 \\ \hline -7 \leq d_{C} < -8 \\ \hline -8 \leq d_{C} < -9 \\ \hline -9 \leq d_{C} < -10 \end{array}$	-8≥ > 0.6 1.2 1.8 2.4 14.7 13.1 11.5 10.0 18.3	-92         >-1           0.2         0.3           0.5         0.6           5.9         16.4           27.0         37.5           22.1	0≥ >-1 0.3 0.6 0.9 1.2 2.0 7.8 13.7 19.5 10.7	11≥ >-1 5.7 11.5 17.2 10.5	2≥ > 2.4 4.9 7.3 3.6	13≥ >> 13≥ >> 1.0 1.0 1.9 2.9 3.8 1.9	14≥ >- 0.6 1.3 1.9 1.0	15≥ >-					-20≥	>-21≥	>-22
$\begin{array}{c} d_{A} \Rightarrow \\ \hline 0 \leq d_{C} < -1 \\ \hline -1 \leq d_{C} < -2 \\ \hline -2 \leq d_{C} < -3 \\ \hline -3 \leq d_{C} < < 4 \\ \hline -4 \leq d_{C} < -5 \\ \hline -5 \leq d_{C} < -6 \\ \hline -6 \leq d_{C} < < 7 \\ \hline -7 \leq d_{C} < -8 \\ \hline -8 \leq d_{C} < 9 \\ \hline -9 \leq d_{C} < -10 \\ \hline -10 \leq d_{C} < -11 \end{array}$	-8≥ > 0.6 1.2 1.8 2.4 14.7 13.1 11.5 10.0 18.3 26.7	-92         >-1           0.2         0.3           0.5         0.6           5.9         16.4           27.0         37.5           22.1         6.7	0≥ >-1 0.3 0.6 0.9 1.2 2.0 7.8 13.7 19.5 10.7 1.9	11≥ >-1 5.7 11.5 17.2 10.5 3.8	2≥ > 2.4 4.9 7.3 3.6	13≥ >- 13≥ >- 1.0 1.9 2.9 3.8 1.9	14≥         >-           0.6         1.3           1.9         1.0						-20≥	>-21≥	>-22
$\begin{array}{c} d_{A} \Rightarrow \\ \hline \\ 0 \leq d_{C} <-1 \\ \hline \\ -1 \leq d_{C} <-2 \\ \hline \\ -2 \leq d_{C} <-3 \\ \hline \\ -3 \leq d_{C} <-4 \\ \hline \\ -4 \leq d_{C} <-5 \\ \hline \\ -5 \leq d_{C} <-6 \\ \hline \\ -6 \leq d_{C} <-7 \\ \hline \\ -7 \leq d_{C} <-8 \\ \hline \\ -8 \leq d_{C} <-9 \\ \hline \\ -9 \leq d_{C} <-10 \\ \hline \\ -10 \leq d_{C} <-11 \\ \hline \\ -11 \leq d_{C} <-12 \end{array}$	-8≥ > 0.6 1.2 1.8 2.4 14.7 13.1 11.5 10.0 18.3 26.7 13.1	-92         >-1           0.2         0.3           0.5         0.6           5.9         16.4           27.0         37.5           22.1         6.7           28.1	0≥ >-1 0.3 0.6 0.9 1.2 2.0 7.8 13.7 19.5 10.7 1.9 14.0	1≥         >-1           5.7         11.5           17.2         10.5           3.8         13.7	2≥ > 2.4 4.9 7.3 3.6 10.9	13≥         >           1.0         1.9           2.9         3.8           1.9         6.5	0.6           1.3           1.9           1.0           2.2	3.3	16≥ >	0.4			-20≥	>-21≥	>-22
$\begin{array}{c} d_{A} \Rightarrow \\ \hline 0 \leq d_{C} < -1 \\ \hline -1 \leq d_{C} < -2 \\ \hline -2 \leq d_{C} < -3 \\ \hline -3 \leq d_{C} < < 4 \\ \hline -4 \leq d_{C} < -5 \\ \hline -5 \leq d_{C} < < 6 \\ \hline -6 \leq d_{C} < < 7 \\ \hline -7 \leq d_{C} < 8 \\ \hline -8 \leq d_{C} < 9 \\ \hline -9 \leq d_{C} < -10 \\ \hline -10 \leq d_{C} < -11 \\ \hline -11 \leq d_{C} < -12 \\ \hline -12 \leq d_{C} < -13 \end{array}$	-8≥ > 0.6 1.2 1.8 2.4 14.7 13.1 11.5 10.0 18.3 26.7 13.1 9.0	-9≥         >-1           0.2         0.3           0.5         0.6           5.9         16.4           27.0         37.5           22.1         6.7           28.1         27.1	0≥ >-1 0.3 0.6 0.9 1.2 2.0 7.8 13.7 19.5 10.7 1.9 14.0 20.5	112         >-1           11.5         7.7           11.5         17.2           10.5         3.8           13.7         18.7	2≥ > 2.4 4.9 7.3 3.6 10.9 9.2	13≥         >           13≥         >           13≥         >           13≥         >           132         >           132         >           132         >           132         >           132         >           132         >           132         >           338         1.9           6.5         5.7	14≥     >-       0.6     1.3       1.9     1.0       2.2     2.0	3.3 2.2	16≥ >- 	17≥ >-1 17≥ >-1 0.4 0.3			-20≥	>-21≥	>-22
$\begin{array}{c} d_{A} \Rightarrow \\ \hline \\ 0 \leq d_{C} < -1 \\ \hline \\ -1 \leq d_{C} < 2 \\ \hline \\ -2 \leq d_{C} < 3 \\ \hline \\ -3 \leq d_{C} < 4 \\ \hline \\ -4 \leq d_{C} < 5 \\ \hline \\ -5 \leq d_{C} < 6 \\ \hline \\ -6 \leq d_{C} < 7 \\ \hline \\ -7 \leq d_{C} < 8 \\ \hline \\ -8 \leq d_{C} < 9 \\ \hline \\ -9 \leq d_{C} < 10 \\ \hline \\ -10 \leq d_{C} < 11 \\ \hline \\ -11 \leq d_{C} < 12 \\ \hline \\ -12 \leq d_{C} < -13 \\ \hline \\ -13 \leq d_{C} < 14 \end{array}$	-8≥ > 0.6 1.2 1.8 2.4 14.7 13.1 11.5 10.0 18.3 26.7 13.1 9.0 4.9	-92         >-1           0.2         0.3           0.5         0.6           5.9         16.4           27.0         37.5           22.1         6.7           28.1         27.1           26.2         26.2	0≥         >-1           0.3         0.6           0.9         1.2           2.0         7.8           13.7         19.5           10.7         1.9           14.0         20.5           27.1         27.1	1≥ >-1 5.7 11.5 17.2 10.5 3.8 13.7 18.7 23.6	2≥ > 2.4 4.9 7.3 3.6 10.9 9.2 7.6	13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≤         >           13         >           13         >           13         >           14 <td< td=""><td>1.14≥         &gt;-           0.6         1.3           1.9         1.0           2.2         2.0           1.9         1.9</td><td>15≥     &gt;-       15≥     &gt;-       3.3     2.2       1.1</td><td>16≥ &gt;- 16≥   &gt;- 1.4 0.9 0.5</td><td>17≥ &gt;-1 17≥ &gt;-1 0.4 0.3 0.1</td><td></td><td></td><td>-20≥</td><td>&gt;-21≥</td><td>&gt;-22</td></td<>	1.14≥         >-           0.6         1.3           1.9         1.0           2.2         2.0           1.9         1.9	15≥     >-       15≥     >-       3.3     2.2       1.1	16≥ >- 16≥   >- 1.4 0.9 0.5	17≥ >-1 17≥ >-1 0.4 0.3 0.1			-20≥	>-21≥	>-22
$\begin{array}{c} d_{A} \Rightarrow \\ \hline \\ 0 \leq d_{C} < -1 \\ \hline \\ -1 \leq d_{C} < 2 \\ -2 \leq d_{C} < 3 \\ \hline \\ -3 \leq d_{C} < 4 \\ \hline \\ -4 \leq d_{C} < 5 \\ \hline \\ -5 \leq d_{C} < 6 \\ \hline \\ -6 \leq d_{C} < 7 \\ \hline \\ -7 \leq d_{C} < 8 \\ \hline \\ -8 \leq d_{C} < 9 \\ \hline \\ -9 \leq d_{C} < 10 \\ \hline \\ -10 \leq d_{C} < -11 \\ \hline \\ -11 \leq d_{C} < -12 \\ \hline \\ -12 \leq d_{C} < -13 \\ \hline \\ -13 \leq d_{C} < -14 \\ \hline \\ -14 \leq d_{C} < -15 \\ \end{array}$	-8≥ > 0.6 1.2 1.8 2.4 14.7 13.1 11.5 10.0 18.3 26.7 13.1 9.0 4.9 0.8	-92         >-1           0.2         0.3           0.5         0.6           5.9         16.4           27.0         37.5           22.1         6.7           28.1         27.1           26.2         25.2	0≥ >-1 0.3 0.6 0.9 1.2 2.0 7.8 13.7 19.5 10.7 1.9 14.0 20.5 27.1 33.6	1≥ >-1 5.7 11.5 17.2 10.5 3.8 13.7 18.7 23.6 28.6	2≥ > 2.4 4.9 7.3 3.6 10.9 9.2 7.6 5.9	13≥         >           13≥         >           13≥         >           13≥         >           132         >           132         >           132         >           132         >           132         >           132         >           132         >           132         >           132         >           132         >           132         >           132         >           132         >           132         >           132         >           132         >           132         >           133         >           133         >           133         >           133         >           133         >           133         >           133         >           133         >           133         >           133         >           133         >           133         >           133         >           133	1.14≥         >-           0.6         1.3           1.9         1.0           2.2         2.0           1.9         1.7	3.3 2.2 1.1	16≥ >- 16≥ 1.4 0.9 0.5	17≥ >-1			-20≥	>-21≥	>-22
$\begin{array}{c} d_{A} \Rightarrow \\ \hline 0 \leq d_{C} < -1 \\ \hline -1 \leq d_{C} < 2 \\ \hline -2 \leq d_{C} < 3 \\ \hline -3 \leq d_{C} < 4 \\ \hline -4 \leq d_{C} < 5 \\ \hline -5 \leq d_{C} < 6 \\ \hline -6 \leq d_{C} < 7 \\ \hline -7 \leq d_{C} < 8 \\ \hline -8 \leq d_{C} < 9 \\ \hline -9 \leq d_{C} < 10 \\ \hline -10 \leq d_{C} < 11 \\ \hline -11 \leq d_{C} < 12 \\ \hline -12 \leq d_{C} < 13 \\ \hline -13 \leq d_{C} < 14 \\ \hline -14 \leq d_{C} < -15 \\ \hline -15 \leq d_{C} < -16 \end{array}$	$-8\ge$ > 0.6 1.2 1.8 2.4 14.7 13.1 11.5 10.0 18.3 26.7 13.1 9.0 4.9 0.8 0.6	-92         >-1           0.2         0.3           0.5         0.6           5.9         16.4           27.0         37.5           22.1         6.7           28.1         27.1           26.2         25.2           16.8         16.8	0≥         >-1           0.3         0.6           0.9         1.2           2.0         7.8           13.7         19.5           10.7         1.9           14.0         20.5           27.1         33.6           22.4	11≥ >-1 5.7 11.5 17.2 10.5 3.8 13.7 18.7 23.6 28.6 19.0	2≥ > 2.4 4.9 7.3 3.6 10.9 9.2 7.6 5.9 3.9	13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           3.8         1.9           5.7         5.0           4.2         3.9	14≥         >-           0.6         1.3           1.9         1.0           2.2         2.0           1.9         1.7           10.7         10.7	15≥         >-           15≥         >-           3.3         2.2           1.1         7.8	16≥ >- 16≥ 1.4 0.9 0.5 7.1	17≥ >-1 17≥ >-1 0.4 0.3 0.1 5.2		19≥ >	-20≥	>-21≥	>-22
$\begin{array}{c} d_{A} \Rightarrow \\ \hline \\ 0 \leq d_{C} < -1 \\ \hline \\ -1 \leq d_{C} < -2 \\ -2 \leq d_{C} < -3 \\ \hline \\ -3 \leq d_{C} < -4 \\ \hline \\ -4 \leq d_{C} < -5 \\ \hline \\ -5 \leq d_{C} < -6 \\ \hline \\ -5 \leq d_{C} < -6 \\ \hline \\ -6 \leq d_{C} < -7 \\ \hline \\ -7 \leq d_{C} < 8 \\ \hline \\ -8 \leq d_{C} < 9 \\ \hline \\ -9 \leq d_{C} < -10 \\ \hline \\ -10 \leq d_{C} < -11 \\ \hline \\ -11 \leq d_{C} < -12 \\ \hline \\ -13 \leq d_{C} < -14 \\ \hline \\ -14 \leq d_{C} < -15 \\ \hline \\ -15 \leq d_{C} < -16 \\ \hline \\ -16 \leq d_{C} < -17 \end{array}$	-82  > 0.6 1.2 1.8 2.4 14.7 13.1 11.5 10.0 18.3 26.7 13.1 9.0 4.9 0.8 0.6 0.3	-92         >-1           0.2         0.3           0.5         0.6           5.9         16.4           27.0         37.5           22.1         6.7           28.1         27.1           26.2         25.2           16.8         8.4	0≥         >-1           0.3         0.6           0.9         1.2           2.0         7.8           13.7         19.5           10.7         1.9           14.0         20.5           27.1         33.6           22.4         11.2	11≥ >-1 5.7 11.5 17.2 10.5 3.8 13.7 18.7 23.6 28.6 19.0 9.5	2≥ > 2.4 4.9 7.3 3.6 10.9 9.2 7.6 5.9 3.9 2.0	13≥         >           13≥         >           132         >           132         >           132         >           132         >           132         >           132         >           132         >           132         >           132         >           132         >           132         >           3.8         1.9           5.7         5.0           4.2         3.9           3.6         >	1.14≥         >-           0.6         1.3           1.9         1.0           2.2         2.0           1.9         1.7           10.7         19.7	15≥         >-           3.3         2.2           1.1         7.8           15.6	16≥ >- 16≥ 1.4 0.9 0.5 7.1 14.2	17≥         >-1           0.4         0.3           0.1         5.2           10.4	18≥     >-	19≥ > 	-20≥	>-21≥	>-22
$\begin{array}{c} d_{A} \Rightarrow \\ \hline 0 \leq d_{C} < -1 \\ \hline -1 \leq d_{C} < -2 \\ \hline -2 \leq d_{C} < -3 \\ \hline -3 \leq d_{C} < 4 \\ \hline -4 \leq d_{C} < 5 \\ \hline -5 \leq d_{C} < 6 \\ \hline -6 \leq d_{C} < 7 \\ \hline -7 \leq d_{C} < 8 \\ \hline -8 \leq d_{C} < 9 \\ \hline -9 \leq d_{C} < 10 \\ \hline -10 \leq d_{C} < -11 \\ \hline -11 \leq d_{C} < -12 \\ \hline -12 \leq d_{C} < -13 \\ \hline -13 \leq d_{C} < -14 \\ \hline -14 \leq d_{C} < -15 \\ \hline -15 \leq d_{C} < -16 \\ \hline -16 \leq d_{C} < -17 \\ \hline -17 \leq d_{C} < -18 \\ \end{array}$	$-8\ge$ > 0.6 1.2 1.8 2.4 14.7 13.1 11.5 10.0 18.3 26.7 13.1 9.0 4.9 0.8 0.6 0.3	-92         >-1           0.2         0.3           0.5         0.6           5.9         16.4           27.0         37.5           22.1         6.7           28.1         27.1           26.2         25.2           16.8         8.4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11≥ >-1 5.7 11.5 17.2 10.5 3.8 13.7 18.7 23.6 28.6 19.0 9.5	2≥ > 22 2.4 4.9 7.3 3.6 7.3 3.6 9.2 7.6 5.9 3.9 2.0	13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           13≥         >           3.8         1.9           5.0         4.2           3.9         3.6           3.3         >	1.14≥         >-           0.6         1.3           1.9         1.0           2.2         2.0           1.9         1.7           10.7         19.7           28.7         28.7	15≥         >-           15≥         >-           3.3         2.2           1.1         7.8           15.6         23.4	16≥ >- 16≥ 16≥ 16≥ 16≥ 16≥ 16≥ 16≥ 14.2 21.3	17≥         >-1           17≥         >-1           0.4         0.3           0.1         5.2           10.4         15.6	18≥     >-       1.1     2.2       3.3	19≥ > 	-20≥ 	>-21≥	>-22

別表13 環境領域{(200≤G<400)∩(30≤Tm,K<40)}の尤度表

$d \rightarrow$	6>	>5>	>4		3> 3	>2>	>1>	>	•0>	>-	1>	>-2>	> >	-3>	>-4>	>-	.5>	>-6	5>	>-7>	>-8
0 <dc<-1< td=""><td></td><td></td><td></td><td>0.9</td><td>22.7</td><td>36</td><td>1</td><td>18.9</td><td>13</td><td>.4</td><td>5.4</td><td></td><td>1.8</td><td>1</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></dc<-1<>				0.9	22.7	36	1	18.9	13	.4	5.4		1.8	1					-		
-1 <dc<-2< td=""><td></td><td></td><td></td><td>0.7</td><td>17.0</td><td>27</td><td>0</td><td>14.1</td><td>10</td><td></td><td>5.1</td><td>+</td><td>3.6</td><td>13.4</td><td>1</td><td>4.5</td><td>2</td><td>5</td><td>0.9</td><td>,</td><td>0.3</td></dc<-2<>				0.7	17.0	27	0	14.1	10		5.1	+	3.6	13.4	1	4.5	2	5	0.9	,	0.3
-2 <dc<-3< td=""><td></td><td></td><td></td><td>0.5</td><td>11.3</td><td>18.</td><td>0</td><td>9.4</td><td>7.</td><td>3</td><td>4.9</td><td></td><td>5.3</td><td>26.</td><td>7</td><td>8.9</td><td>5.</td><td>0</td><td>1.7</td><td>7</td><td>0.6</td></dc<-3<>				0.5	11.3	18.	0	9.4	7.	3	4.9		5.3	26.	7	8.9	5.	0	1.7	7	0.6
-3≤d _c <-4				0.3	5.7	9.0	)	4.7	4.	2	4.7		7.1	40.0	)	13.3	7	5	2.5	5	0.9
-4≤d _C <-5									1.	1	4.4		8.9	53.	3	17.8	10.	.0	3.3	3	1.1
-5≤d _C <-6						1			1				1.2	1.2		25.9	38.	.3	17.	3	11.1
-6≤d _C <-7									1				0.8	0.8		17.3	25.	.5	11.	5	10.0
-7 <i>≤</i> d _C <-8													0.4	0.4		8.6	12.	.8	5.8	3	8.9
-8≤d _C <-9					, , ,																7.8
-9≤d _C <-10													0.6	0.6		15.8	20.	.9	5.1		7.1
-10≤d _C <-11									1				1.3	1.3		31.6	41.	.8	10.	1	6.3
-11≤d _C <-12									1										4.7	7	11.2
-12≤d _C <-13																			3.9	)	8.2
<i>-13≤d</i> _C <-14												Ì					Ì		3.1	1	5.3
<i>-14≤d</i> _C <-15																			2.4	t I	2.4
-15≤d _C <-16			İ						1										1.0	5	1.6
<i>-16≤d</i> _C <-17			İ									ļ							0.8	3	0.8
-17≤d _C <-18			İ																		
-18≤d _C <-19																					1.4
$d_A \!\! \Rightarrow$	-8≥	>-9≥	: >-1	0≥ >-1	11≥ >	-12≥	>-13	≥ >-	14≥	>-1	5≥	>-16	i≥ >-	17≥	>-18≥	>-]	19≥	>-2	0≥	>-21≥	>-22
$0 \leq d_C < 1$																			·		
-1≤d _C <-2																					
<i>-2≦d_C&lt;-3</i>																					
<i>-3≦d_C&lt;-4</i>																					
<i>-4≦d</i> _C <-5																					
-5≤d _C <-6	2.	.5	2.5																		
-6≤d _C <-7	7.	.4	19.9	2.6	3.1			1.0													
-7≤d _C <-8	12	2.3	37.3	5.2	6.3			2.1													
-8≤d _C <-9	17	7.2	54.7	7.8	9.4			3.1	-					-							
-9≤d _C <-10	12	2.4	27.3	3.9	4.7			1.6													
-10≤d _C <-11	7.	.6															<u> </u>				
-11≤d _C <-12	17	7.5	34.2	12.0	11.8	3.	7	3.0	1.	3			0.8								
-12≤d _C <-13	12	2.4	35.5	17.5	15.8	3	3	2.1	0.	9			0.5								
<i>-13≤d</i> _C <-14	7.	.4	36.8	23.0	19.8	2.	8	1.0	0.	.4			0.3	-	<u> </u>		<u> </u>				
<i>-14≤d</i> _C <-15	2.	.4	38.1	28.6	23.8	2	4				ļ			-			<u> </u>				
-15≤d _C <-16	1.	.6	25.4	19.0	15.9	1.	5	1.1	15	5.6	5.4		4.8	4.8		0.5	0.	5	0	5	
<i>-16≤d</i> _C <-17	0.	.8	12.7	9.5	7.9	0.	8	2.2	31	.2	10.	8	9.7	9.7	'	1.1	1.	1	1.	1	
<i>-17≤d</i> _C <-18								3.2	46	6.8	16.	1	14.5	14.	5	1.6	1.	6	1.0	5	
<i>-18≤d</i> _C <-19		Ì	31.4	27.1	21.4	8.	5	2.9	2.	9	1.4		2.9	ł							

別表 14 環境領域{(200≤G<400)∩(40≤T_{m,K}<50)}の尤度表

$d_A \Rightarrow$	6≥	>5≥ >	4≥ >.	3≥ >2	2≥ >	1≥	>0≥ >	>-1≥	>-2≥	>-3≥	2 >-4	4≥ >	-5≥	>-6≥	: >	-7≥	>-8
$0 \leq d_C < 1$	I	3.2	3.6	0.8	24.6	13.9	41.3	11.9			0.8						
-1≤d _C <-2		2.4	2.7	0.6	18.5	10.4	30.9	10.7	0.	8	4.7	2.1	2.	6	3.3	5.	4
-2≤d _C <-3		1.6	1.8	0.4	12.3	6.9	20.6	9.5	1.	5	8.6	4.1	5.	1	6.6	10	.7
<i>-3≦d_C&lt;-4</i>		0.8	0.9	0.2	6.2	3.5	10.3	8.3	2	3	12.5	6.1	7.	7	9.9	16	6.1
-4≤d _C <-5								7.1	3.	1	16.3	8.2	10	.2	13.3	21	.4
-5≤d _C <-6					ĺ				1.	8	1.8	0.6	17	.6	21.2	33	.3
-6≤d _C <-7			1		Ì		1	1	1	2	1.2	0.4	11	.7	14.1	22	.2
-7≤d _C <-8				1					0.	6	0.6	0.2	5.	9	7.1	11	.1
-8≤d _C <-9																	
-9≤dc<-10											Î		0.	5		4.	3
-10≤d _C <-11											Î		1.	1		8.	5
-11≤d _C <-12			î 1 1	1		1					Î					0.	5
-12≤d _C <-13																0.	4
<i>-13≤d</i> _C <-14																0.	2
<i>-14≤d</i> _C <-15				1							1						
<i>-15≤d</i> _C <-16																	
<i>-16≤d</i> _C <-17				1					-		1						
<i>-17≦d_C&lt;-18</i>				1													
<i>-18≤d_C&lt;-19</i>																-	
			1	1	l	1		- 1			1		1			1	
$d_A \Rightarrow$	-8≥	>-9≥ >-1	10≥ >-1	1≥ >-1	12≥ >-3	13≥ >	-14≥ >	-15≥ >	-16≥	>-172	≥ >-1	8≥ >-	19≥	>-20≥	≥ >-	21≥	>-25
$d_A \Rightarrow$ $0 \leq d_C <-1$	-8≥	>-9≥ >-1	10≥ >-1	1≥ >-1	12≥ >-1	13≥ >	-14≥ >	-15≥ >	-16≥	>-172	≥ >-1	8≥ >-	19≥	>-20≥	≥ >-	21≥	>-25
$d_A \Rightarrow$ $0 \leq d_C <-1$ $-1 \leq d_C <-2$	-8≥ 2.0	>-9≥ >-1 5 2.3	10≥ >-1 0.3	12 >-1	12≥ >-:	13≥ >	-14≥ >	-15≥ >	-16≥	>-172	≥ >-1	8≥ >-	19≥	>-20≥	≥ >-	21≥	>-25
$d_{A} \Rightarrow$ $0 \leq d_{C} < -1$ $-1 \leq d_{C} < -2$ $-2 \leq d_{C} < -3$	-8≥ 2.0 5.1	>-9≥ >-1 5 2.3 4.6	10≥ >1 0.3 0.5	1≥ >-1	2≥ >-:	13≥ >	142 >	-15≥ >	-16≥	>-172	≥ >-1	8≥ >-	19≥	>-20≥	≥ >-	21≥	>-25
$d_{A} \Rightarrow$ $0 \leq d_{C} < -1$ $-1 \leq d_{C} < -2$ $-2 \leq d_{C} < -3$ $-3 \leq d_{C} < -4$	-8≥ 2.0 5.1 7.7	>-9≥ >-7 5 2.3 1 4.6 7 6.9	10≥ >-1 0.3 0.5 0.8	l≥ >-1	12≥ >-:	13≥ >	-142 >	-15≥ >	16≥	>-172	≥ >-1	8≥ >-	19≥	>-20≥	2 >-	21≥	>-25
$\begin{array}{c} d_{A} \Rightarrow \\ \hline 0 \leq d_{C} < -1 \\ \hline -1 \leq d_{C} < -2 \\ \hline -2 \leq d_{C} < -3 \\ \hline -3 \leq d_{C} < -4 \\ \hline -4 \leq d_{C} < -5 \end{array}$	-8≥ 2.0 5.1 7.7 10.	>-9≥ >-1 5 2.3 1 4.6 7 6.9 2 9.2	10≥         >-1           0.3         0.5           0.8         1.0	12 >-1	2≥ >	13≥ >	-142 >	-15≥ >	16≥	>-172	≥ >-1	8≥ >-	19≥	>-20≥	2 >-	21≥	>-25
$\begin{array}{c} d_{A} \Rightarrow \\ \hline 0 \leq d_{C} < -1 \\ \hline -1 \leq d_{C} < -2 \\ \hline -2 \leq d_{C} < -3 \\ \hline -3 \leq d_{C} < -4 \\ \hline -4 \leq d_{C} < -5 \\ \hline -5 \leq d_{C} < -6 \end{array}$	-8≥ 2.0 5.1 7.7 10. 16.	>-92 >- 5 2.3 1 4.6 7 6.9 2 9.2 4 4.8	10≥     >-1       0.3     0.5       0.8     1.0       1.2	0.6	12≥ >: 0.6	13≥ >	-142 >	-15≥ >	16>	>-172	≥ >-1	8≥ >-	19≥	>-20≥	2 >	21≥	>-25
$\begin{array}{c} d_{A} \Rightarrow \\ \hline 0 \leq d_{C} < -1 \\ \hline -1 \leq d_{C} < -2 \\ \hline -2 \leq d_{C} < -3 \\ \hline -3 \leq d_{C} < < 4 \\ \hline -4 \leq d_{C} < -5 \\ \hline -5 \leq d_{C} < -6 \\ \hline -6 \leq d_{C} < -7 \end{array}$	-8≥ 2.€ 5.1 7.7 10. 16. 10.	>-9≥ >-1 5 2.3 1 4.6 7 6.9 2 9.2 4 4.8 9 6.6	10≥ >-1 0.3 0.5 0.8 1.0 1.2 2.7	<i>0.6</i> 5.7	22 >	13≥ > 	-14≥ >	-15≥ >	162	>-172	2 >-1	8≥ >	19≥	>-20≥	2 >-	21≥	>-25
$\begin{array}{c} d_{A} \Rightarrow \\ \hline 0 \leq d_{C} < -1 \\ \hline -1 \leq d_{C} < -2 \\ \hline -2 \leq d_{C} < -3 \\ \hline -3 \leq d_{C} < -3 \\ \hline -4 \leq d_{C} < -5 \\ \hline -5 \leq d_{C} < -6 \\ \hline -6 \leq d_{C} < -7 \\ \hline -7 \leq d_{C} < -8 \end{array}$	-8≥ 2.6 5.1 7.7 10. 16. 10. 5.5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10≥ >-1 0.3 0.5 0.8 1.0 1.2 2.7 4.3	1≥ >-1 0.6 5.7 10.8	12≥ > 0.6 3.3 6.0	13≥     >       13≥     >       7.7     15.5	-14≥ > 8.7 17.4	-15≥ > 3.4 6.8	162	>-172	2 >-1	8≥ >	19≥	>-20≥	2 >-	21≥	>-25
$\begin{array}{c} d_{A} \Rightarrow \\ 0 \leq d_{C} < -1 \\ -1 \leq d_{C} < -2 \\ -2 \leq d_{C} < -3 \\ -3 \leq d_{C} < -4 \\ -4 \leq d_{C} < -5 \\ -5 \leq d_{C} < -6 \\ -6 \leq d_{C} < -7 \\ -7 \leq d_{C} < -8 \\ -8 \leq d_{C} < -9 \end{array}$	-8≥ 2.0 5.1 7.7 10. 16. 10. 5.5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10≥         >-1           0.3         0.5           0.8         1.0           1.2         2.7           4.3         5.8	0.6 5.7 10.8 15.9	12≥ > 0.6 3.3 6.0 8.7	13≥ > 7.7 15.5 23.2	-14≥ > 8.7 17.4 26.1	-15≥ > 3.4 6.8 10.1	162	>-172	2 >-1	8≥ >	19≥	>-20≥	2 >-	21≥	>-25
$\begin{array}{c} d_{A} \Rightarrow \\ \hline 0 \leq d_{C} < -1 \\ \hline -1 \leq d_{C} < -2 \\ \hline -2 \leq d_{C} < -3 \\ \hline -3 \leq d_{C} < -3 \\ \hline -3 \leq d_{C} < -4 \\ \hline -4 \leq d_{C} < -5 \\ \hline -5 \leq d_{C} < -6 \\ \hline -6 \leq d_{C} < -7 \\ \hline -7 \leq d_{C} < -8 \\ \hline -8 \leq d_{C} < -9 \\ \hline -9 \leq d_{C} < -10 \end{array}$	-8≥ 2.0 5.1 7.7 10. 16. 10. 10. 22.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10≥         >-1           0.3         0.5           0.8         1.0           1.2         2.7           4.3         5.8           4.0	11≥         >-1           0.6         5.7           10.8         15.9           10.1	12≥ > 0.6 3.3 6.0 8.7 4.3	13≥         >           13≥         >           7.7         15.5           23.2         12.1	14≥ > 14≥ > 14≥ > 14≥ > 14≥ - 14≥ - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14= - 14=	-15≥ >> 3.4 6.8 10.1 5.1	16≥	>-17:2	2 >-1	8≥ >	192	>-202	2 >-	21≥	>-25
$\begin{array}{c} d_{A} \Rightarrow \\ \hline 0 \leq d_{C} < -1 \\ \hline -1 \leq d_{C} < -2 \\ \hline -2 \leq d_{C} < -3 \\ \hline -3 \leq d_{C} < -4 \\ \hline -4 \leq d_{C} < -5 \\ \hline -5 \leq d_{C} < -6 \\ \hline -6 \leq d_{C} < -7 \\ \hline -7 \leq d_{C} < -8 \\ \hline -8 \leq d_{C} < -9 \\ \hline -9 \leq d_{C} < -10 \\ \hline -10 \leq d_{C} < -11 \end{array}$	-8≥ 2.0 5.1 7.7 10. 10. 16. 10. 5.5 22. 44.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10≥         >-1           0.3         0.5           0.8         1.0           1.2         2.7           4.3         5.8           4.0         2.1	1≥         >-1           0.6         5.7           10.8         15.9           10.1         4.3	2≥ > 0.6 3.3 6.0 8.7 4.3	13≥     >       13≥     >       7.7     15.5       23.2     12.1       1.1	-14≥ > 8.7 17.4 26.1 13.0	-15≥ > 3.4 6.8 10.1 5.1	16≥	>-172	2 >-1	8≥ >	192	>-20≥		21≥	>-25
$\begin{array}{c} d_{A} \Rightarrow \\ \hline 0 \leq d_{C} < -1 \\ \hline -1 \leq d_{C} < -2 \\ \hline -2 \leq d_{C} < -3 \\ \hline -3 \leq d_{C} < -3 \\ \hline -3 \leq d_{C} < -3 \\ \hline -4 \leq d_{C} < -5 \\ \hline -5 \leq d_{C} < -6 \\ \hline -6 \leq d_{C} < -7 \\ \hline -5 \leq d_{C} < -6 \\ \hline -6 \leq d_{C} < -7 \\ \hline -7 \leq d_{C} < -8 \\ \hline -8 \leq d_{C} < -9 \\ \hline -9 \leq d_{C} < -10 \\ \hline -10 \leq d_{C} < -11 \\ \hline -11 \leq d_{C} < -12 \end{array}$	-8≥ 2.6 5.1 7.7 10. 16. 10. 5.5 22. 44. 8.9	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ID≥         >-1           0.3         0.5           0.8         1.0           1.2         2.7           4.3         5.8           4.0         2.1           11.3	112         >-1           0.6         5.7           10.8         15.9           10.1         4.3           22.7	12≥ > 0.6 3.3 6.0 8.7 4.3 12.2	13≥     >       13≥     >       7.7     15.5       23.2     12.1       1.1     14.6	14≥ > 8.7 17.4 26.1 13.0 2.8	-15≥ >> 3.4 6.8 10.1 5.1 0.9	16≥	>-172	2 >-1	8≥ >	19≥ 	>-20>	2 >*	21≥	>-25
$\begin{array}{c} d_{A} \Rightarrow \\ \hline 0 \leq d_{C} <-1 \\ \hline -1 \leq d_{C} <-2 \\ \hline -2 \leq d_{C} <-3 \\ \hline -3 \leq d_{C} <-4 \\ \hline -4 \leq d_{C} <-5 \\ \hline -5 \leq d_{C} <-6 \\ \hline -6 \leq d_{C} <-7 \\ \hline -7 \leq d_{C} <-8 \\ \hline -8 \leq d_{C} <-9 \\ \hline -9 \leq d_{C} <-10 \\ \hline -10 \leq d_{C} <-11 \\ \hline -11 \leq d_{C} <-12 \\ \hline -12 \leq d_{C} <-13 \end{array}$	-8≥ 2.6 5.1 7.7 10. 16. 10. 10. 22. 44. 8.9 5.5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10≥ >-1 0.3 0.5 0.8 1.0 1.2 2.7 4.3 5.8 4.0 2.1 11.3 7.5	1≥         >-1           0.6         5.7           10.8         15.9           10.1         4.3           22.7         19.3	122         >-           0.6         3.3           6.0         8.7           4.3         12.2           12.3         12.3	13≥         >           13≥         >           7.7         15.5           23.2         12.1           1.1         14.6           19.7	-14≥ > 8.7 17.4 26.1 13.0 2.8 12.7	-15≥ > 3.4 6.8 10.1 5.1 0.9 1.4	16≥ 	>-17:2	≥ >-1	8≥ >	19≥ 	>-202		21≥	>-25
$\begin{array}{c} d_{A} \Rightarrow \\ 0 \leq d_{C} < -1 \\ -1 \leq d_{C} < -2 \\ -2 \leq d_{C} < -3 \\ -3 \leq d_{C} < < 4 \\ -4 \leq d_{C} < -5 \\ -5 \leq d_{C} < < 6 \\ -6 \leq d_{C} < < 7 \\ -7 \leq d_{C} < 8 \\ -8 \leq d_{C} < 9 \\ -9 \leq d_{C} < -10 \\ -10 \leq d_{C} < -11 \\ -11 \leq d_{C} < -12 \\ -12 \leq d_{C} < -13 \\ -13 \leq d_{C} < -14 \end{array}$	-8≥ 2.0 5.1 7.7 10. 10. 10. 5.5 22. 22. 44. 8.9 5.9 3.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10≥ >-1 0.3 0.5 0.8 1.0 1.2 2.7 4.3 5.8 4.0 2.1 11.3 7.5 3.8	1≥         >-1           0.6         5.7           10.8         15.9           10.1         4.3           22.7         19.3           15.9         15.9	12≥         >-           0.6         3.3           6.0         8.7           4.3         12.2           12.3         12.4	13≥         >           13≥         >           7.7         15.5           23.2         12.1           1.1         14.6           19.7         24.9	-14≥ > 8.7 17.4 26.1 13.0 2.8 12.7 22.6	-15≥ >> -15≥ >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15> >> -15>>> -15> >> -15> >	16≥ 	>-17: 	≥ >-1 0.8 1.7	8≥ >	192 0. 0.	>-20> 		212	>-25
$\begin{array}{c} d_{A} \Rightarrow \\ \hline 0 \leq d_{C} < \cdot 1 \\ \hline -1 \leq d_{C} < \cdot 2 \\ \hline -2 \leq d_{C} < \cdot 3 \\ \hline -3 \leq d_{C} < \cdot 4 \\ \hline -4 \leq d_{C} < \cdot 5 \\ \hline -5 \leq d_{C} < \cdot 6 \\ \hline -6 \leq d_{C} < \cdot 7 \\ \hline -7 \leq d_{C} < \cdot 8 \\ \hline -8 \leq d_{C} < \cdot 9 \\ \hline -9 \leq d_{C} < 10 \\ \hline -10 \leq d_{C} < \cdot 11 \\ \hline -11 \leq d_{C} < \cdot 12 \\ \hline -12 \leq d_{C} < \cdot 13 \\ \hline -13 \leq d_{C} < \cdot 14 \\ \hline -14 \leq d_{C} < \cdot 15 \end{array}$	-8≥ 2.0 5.1 7.7 10. 16. 10. 22. 44. 8.9 5.9 3.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ID≥         >-1           0.3         0.5           0.8         1.0           1.2         2.7           4.3         5.8           4.0         2.1           11.3         7.5           3.8	11≥         >-1           0.6         5.7           10.8         15.9           10.1         4.3           22.7         19.3           15.9         12.5	12≥         >-           0.6         3.3           6.0         8.7           4.3         12.2           12.3         12.4           12.5         12.5	13≥     >       13≥     >       7.7     15.5       23.2     12.1       14.6     19.7       24.9     30.0	-14≥ > 8.7 17.4 26.1 13.0 2.8 12.7 22.6 32.5	-15≥ >> 3.4 6.8 10.1 5.1 0.9 1.4 2.0 2.5	16≥ 0. 1. 1. 2.	>-17: 	≥ >-1 0.8 1.7 2.5	8≥ > <i>1.7</i> <i>3.3</i> <i>5.0</i>	192 192 0. 0.	>-20> 		21≥	>-25
$\begin{array}{c} d_{A} \Rightarrow \\ \hline 0 \leq d_{C} <-1 \\ \hline -1 \leq d_{C} <-2 \\ \hline -2 \leq d_{C} <-3 \\ \hline -3 \leq d_{C} <-4 \\ \hline -4 \leq d_{C} <-5 \\ \hline -5 \leq d_{C} <-6 \\ \hline -6 \leq d_{C} <-7 \\ \hline -7 \leq d_{C} <-8 \\ \hline -8 \leq d_{C} <-9 \\ \hline -9 \leq d_{C} <-10 \\ \hline -10 \leq d_{C} <-11 \\ \hline -11 \leq d_{C} <-12 \\ \hline -12 \leq d_{C} <-13 \\ \hline -13 \leq d_{C} <-14 \\ \hline -14 \leq d_{C} <-15 \\ \hline -15 \leq d_{C} <-16 \\ \end{array}$	-8≥ 2.6 5.1 7.7 10. 16. 10. 22. 44. 8.9 5.5 3.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10≥         >-           0.3         0.5           0.8         1.0           1.2         2.7           4.3         5.8           4.0         2.1           11.3         7.5           3.8	1≥         >-1           0.6         5.7           10.8         15.9           10.1         4.3           22.7         19.3           15.9         12.5           8.8         8	12≥         >-           0.6         3.3           6.0         8.7           4.3         12.2           12.3         12.4           12.5         8.8	13≥         >           13≥         >           7.7         15.5           23.2         12.1           1.1         14.6           19.7         24.9           30.0         20.5	-14≥ > 8.7 17.4 26.1 13.0 2.8 12.7 22.6 32.5 25.3	-15≥ > 3.4 6.8 10.1 5.1 0.9 1.4 2.0 2.5 3.7	16≥ 0. 1. 1. 2. 3.	>-17: 	≥ >-1 0.8 1.7 2.5 6.8	8≥ >	192 0. 0. 0. 5.	>-20> 	5.6	212	>-25
$\begin{array}{c} d_{A} \Rightarrow \\ \hline 0 \leq d_{C} < 1 \\ \hline -1 \leq d_{C} < 2 \\ \hline -2 \leq d_{C} < 3 \\ \hline -3 \leq d_{C} < 4 \\ \hline -4 \leq d_{C} < 5 \\ \hline -5 \leq d_{C} < 6 \\ \hline -6 \leq d_{C} < 7 \\ \hline -7 \leq d_{C} < 8 \\ \hline -8 \leq d_{C} < 9 \\ \hline -9 \leq d_{C} < 10 \\ \hline -10 \leq d_{C} < 11 \\ \hline -11 \leq d_{C} < 12 \\ \hline -12 \leq d_{C} < 13 \\ \hline -13 \leq d_{C} < 14 \\ \hline -14 \leq d_{C} < 15 \\ \hline -15 \leq d_{C} < 16 \\ \hline -16 \leq d_{C} < 17 \end{array}$	-8≥ 2.0 5.1 7.7 10. 16. 10. 5.5 22. 22. 44. 8.5 5.5 3.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ID≥         >-1           0.3         0.5           0.8         1.0           1.2         2.7           4.3         5.8           4.0         2.1           11.3         7.5           3.8	112         >-1           0.6         5.7           10.8         15.9           10.1         4.3           22.7         19.3           15.9         12.5           8.8         5.2	12≥         >-           0.6         3.3           6.0         8.7           4.3         12.2           12.3         12.4           12.5         8.8           5.2         5.2	13≥         >           13≥         >           7.7         15.5           23.2         12.1           14.6         19.7           24.9         30.0           20.5         11.0	-14≥ > 8.7 17.4 26.1 13.0 2.8 12.7 22.6 32.5 25.3 18.0	-15≥ >> 3.4 6.8 10.1 5.1 0.9 1.4 2.0 2.5 3.7 4.9	16≥ 	>-17: 	≥ >-1 0.8 1.7 2.5 6.8 11.1	8≥ >	192 192 0. 0. 0. 0. 10	>-20> 	5.6	21≥	>-25
$\begin{array}{c} d_{A} \Rightarrow \\ \hline 0 \leq d_{C} <-1 \\ \hline -1 \leq d_{C} <-2 \\ \hline -2 \leq d_{C} <-3 \\ \hline -3 \leq d_{C} <-4 \\ \hline -4 \leq d_{C} <-5 \\ \hline -5 \leq d_{C} <-6 \\ \hline -6 \leq d_{C} <-7 \\ \hline -7 \leq d_{C} <-8 \\ \hline -8 \leq d_{C} <-9 \\ \hline -9 \leq d_{C} <-10 \\ \hline -10 \leq d_{C} <-11 \\ \hline -11 \leq d_{C} <-12 \\ \hline -12 \leq d_{C} <-13 \\ \hline -13 \leq d_{C} <-14 \\ \hline -14 \leq d_{C} <-15 \\ \hline -15 \leq d_{C} <-16 \\ \hline -16 \leq d_{C} <-17 \\ \hline -17 \leq d_{C} <-18 \\ \end{array}$	-8≥ 2.6 5.1 7.7 10. 16. 10. 5.5 22. 44. 8.9 5.9 3.0 	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ID≥         >-1           0.3         0.5           0.8         1.0           1.2         2.7           4.3         5.8           4.0         2.1           11.3         7.5           3.8	1≥         >-1           0.6         5.7           10.8         15.9           10.1         4.3           22.7         19.3           15.9         12.5           8.8         5.2           1.5	12≥         >-           0.6         3.3           6.0         8.7           4.3         12.2           12.3         12.4           12.5         8.8           5.2         1.5	13≥         >           13≥         >           7.7         15.5           23.2         12.1           14.6         19.7           24.9         30.0           20.5         11.0           1.5         1.5	-14≥ > 8.7 17.4 26.1 13.0 2.8 12.7 22.6 32.5 25.3 18.0 10.8	-15≥ ≥ 3.4 6.8 10.1 5.1 0.9 1.4 2.0 2.5 3.7 4.9 6.2	16≥ 0. 0. 1. 1. 2. 3. 3. 4.	>-17: 	≥ >-1 0.8 1.7 2.5 6.8 11.1 15.4	8≥ > 1.7 3.3 5.0 8.5 11.9 15.4	19≥ 19≥ 0. 0. 0. 0. 0. 10 15	>-20> 	2 > 5.6 11.3 16.9	21≥ 3. 7. 10	>-25 6 1 0.8

別表15 環境領域{(400≤G<600)∩(20≤Tm,K<30)}の尤度表

$d \Rightarrow$	6>	>5>		4>	3>	>?>	>1	>	>0>	>-	1>	>-2	>>>	.3>	-4>	>-4	5>	>-6	i>	>-7>	>-8
$0 \le d_c \le -1$	1	7	92	99	19	5 2	52	10.5	1	79	48	2	07				/_		/=		2.0
-1 <dc<-?< td=""><td>1</td><td>2</td><td>6.9</td><td>7.5</td><td>14</td><td>7 18</td><td>89</td><td>81</td><td>14</td><td>4.6</td><td>4.4</td><td>1</td><td>4.0</td><td>71</td><td>2</td><td>1</td><td>2</td><td>,</td><td>2.1</td><td></td><td>53</td></dc<-?<>	1	2	6.9	7.5	14	7 18	89	81	14	4.6	4.4	1	4.0	71	2	1	2	,	2.1		53
-2 <dc<-3< td=""><td>0.0</td><td>8</td><td>4.6</td><td>5.0</td><td>9.8</td><td></td><td>2.6</td><td>5.8</td><td>1</td><td>1.3</td><td>4.1</td><td>,</td><td>7.4</td><td>14.1</td><td>4</td><td>.1</td><td>4.</td><td>1</td><td>4.1</td><td></td><td>0.6</td></dc<-3<>	0.0	8	4.6	5.0	9.8		2.6	5.8	1	1.3	4.1	,	7.4	14.1	4	.1	4.	1	4.1		0.6
-3 <dc<-4< td=""><td>0.4</td><td>4</td><td>2.3</td><td>2.5</td><td>4.9</td><td>6</td><td>.3</td><td>3.5</td><td>8</td><td>.0</td><td>3.8</td><td>3</td><td>10.8</td><td>21.2</td><td>6</td><td>.2</td><td>6.</td><td>2</td><td>6.2</td><td></td><td>5.9</td></dc<-4<>	0.4	4	2.3	2.5	4.9	6	.3	3.5	8	.0	3.8	3	10.8	21.2	6	.2	6.	2	6.2		5.9
-4 <dc<-5< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.2</td><td>4</td><td>.7</td><td>3.5</td><td>5</td><td>14.1</td><td>28.2</td><td>8</td><td>.2</td><td>8.</td><td>2</td><td>8.2</td><td>2</td><td>21.2</td></dc<-5<>								1.2	4	.7	3.5	5	14.1	28.2	8	.2	8.	2	8.2	2	21.2
-5≤d _C <-6													1.7	2.2	8	.8	12.	.7	9.4	1 2	29.3
-6≤d _C <-7					1				+			$\neg$	1.1	1.5	5	.9	8.	5	7.2	2	21.9
-7 <u>≤</u> d _C <-8													0.6	0.7	2	.9	4.	2	5.0	)	4.5
-8≤d _C <-9																			2.7	7	7.1
-9≤d _C <-10											1						1.	8	3.2		5.6
-10≤d _C <-11									1						1		3.	7	3.7	1 2	24.1
-11≤d _C <-12									1						1				1.3		2.6
-12≤d _C <-13																			0.9	)	2.0
<i>-13≤d</i> _C <-14					1														0.4	!	1.4
<i>-14≤d</i> _C <-15																					0.9
-15≤d _C <-16									1						1						0.6
<i>-16≤d</i> _C <-17					1																0.3
-17≤d _C <-18																					
-18≤d _C <-19																					
$d_A \!\! \Rightarrow$	-8≥	>-9≥	2 >-	10≥ >-	11≥	>-12≥	>-1	3≥ >	-14≥	>-1	5≥	>-1	6≥ >-	17≥ >	-18≥	>-1	9≥	>-20	0≥	>-21≥	>-22
$0 \leq d_C < 1$																					
-1≤d _C <-2	0.	3	0.3											1							
-2≤d _C <-3	0.	6	0.6																		
<i>-3≦d</i> _C <-4	0.	9	0.9																		
-4≤dc<-5	1.	2	1.2																		
<i>-5≤d</i> _C <-6	19	.9	12.7	1.1	1.1	1	.1														
-6 <i>≤</i> d _C <-7	17.	.2	22.3	4.1	6.5	2	.7	0.5	0	.5			0.1								
-7 <i>≤</i> d _C <-8	14	.5	31.9	7.2	11.	9 4	.3	1.0	1	.0	ļ		0.3	-							
-8≤d _C <-9	11	.8	41.6	10.2	17	3 5	.9	1.6	1	.6			0.4	-							
<i>-9≦d</i> _C <-10	23	.4	34.1	5.9	10.	5 3	.7	0.8	0	.8			0.2							_	
-10≤d _C <-11	35.	.1	26.7	1.6	3.7	' 1	.6				ļ			<u> </u>							
-11≤d _C <-12	11.	.2	22.3	11.5	28.	1 1	2.7	7.8	1	.3	1.0	)		0.3							
-12≤d _C <-13	8.	0	16.4	10.3	28.	9 1.	3.7	10.5	7	.0	1.8	8	0.3	0.2							
<i>-13≤d</i> _C <-14	4.	9	10.4	9.1	29.	8 1.	4.8	13.1	12	2.7	2.2	7	0.6	0.1				_			
<i>-14≤d</i> _C <-15	1.	8	4.4	7.9	30.	7 1.	5.8	15.8	18	8.4	3.5	5	0.9		_					_	
-15≤d _C <-16	1.	2	2.9	5.3	20.	7 1	).8	12.4	20	).9	7.9	2	5.9	8.9	1	.9	θ.	2	0.3	5	
<i>-16≤d_C&lt;-17</i>	0.	6	1.5	2.6	10.	7 5	.7	9.1	2.	3.4	12.	2	10.8	17.7	3	.8	θ.	5	1.0	)	
-17≤d _C <-18				•	0.7	7 0	.7	5.8	2.	5.9	16.	5	15.8	26.6	5	.8	0.	7	1.4	4	
<i>-18≤d</i> _C < <i>-19</i>	1.	5	11.9	14.2	9.7	1	4.2	6.7	9	.7	5.2	2	6.0	9.7	6	.7	3.	7	0.7	7	

別表 16 環境領域{(400≤G<600)∩(30≤T_{m,K}<40)}の尤度表

$d_A \Rightarrow$	5≥ >	4≥ >3	3≥ >2	2≥ >	l≥ >	>0≥ >	-1≥ >-	2≥ >-	3≥ >-	4≥ >-	5≥ >-	6≥ >-	.7≥ >	>-8≥ >-9
$0 \leq d_C < 1$	3.6	9.2	14.0	21.0	8.5	20.5	22.3	0.8						
-1≤d _C <-2	2.7	6.9	10.5	15.8	6.3	17.4	18.4	2.2	2.5	2.5	3.3	3.6	4.5	2.5
-2≤d _C <-3	1.8	4.6	7.0	10.5	4.2	14.3	14.6	3.5	5.0	5.0	6.5	7.1	9.0	5.0
<i>-3≦d</i> _C <-4	0.9	2.3	3.5	5.3	2.1	11.2	10.7	4.9	7.5	7.5	9.8	10.7	13.5	7.5
-4≤d _C <-5						8.1	6.8	6.2	9.9	9.9	13.0	14.3	18.0	9.9
-5≤d _C <-6							0.8	1.7	0.4	4.6	27.0	12.4	40.7	10.8
-6≤d _C <-7		1					0.6	1.1	0.3	3.0	18.0	9.3	28.9	10.5
-7 <i>≤</i> d _C <-8							0.3	0.6	0.1	1.5	9.0	6.1	17.1	10.1
-8≤d _C <-9												2.9	5.4	9.8
-9≤dc<-10											0.2	1.9	7.1	20.6
-10≤d _C <-11											0.4	0.8	8.7	31.3
<i>-11≤d_C&lt;-12</i>				1								1.5	3.0	5.7
<i>-12≤d</i> _C <-13		1										1.0	2.0	3.8
<i>-13≤d</i> _C <-14				1								0.5	1.0	1.9
<i>-14≤d</i> _C <-15				1										
<i>-15≤d</i> _C <-16														
<i>-16≤d_C&lt;-17</i>				1	1				1		1	1		
<i>-17≦d_C&lt;-18</i>				1										
-18 <d10< td=""><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.4</td><td></td></d10<>				1									1.4	
-10_u(<-1)									1			i		
$d_A \Rightarrow$	-9≥ >-	10≥ >-1	1≥ >-1	2≥ >-1	3≥ >-	-14≥ >-	15≥ >-	16≥ >-1	17≥ >-3	18≥ >-1	19≥ >-2	20≥ >-	21≥ >	-22≥ >-25
$\frac{d_A \Rightarrow}{0 \le d_C < 1}$	-9≥ >-:	10≥ >-1	1≥ >-1	2≥ >-1	3≥ >-	·14≥ >-	15≥ >-1	6≥ >-]	17≥ >-1	8≥ >-1	19≥ >-2	20≥ >-	21≥ >	-22≥ >-25
$\frac{d_A \Rightarrow}{0 \le d_C <-1}$	-9≥ >-5 0.5	10≥ >-1 0.5	1≥ >-1	2≥ >-1	3≥ >-	14≥ >-	15≥ >	l6≥ >-]	l7≥ >~:	[8≥ >-]	19≥ >-2	20≥ >	21≥ >	-22≥ >-25
$\frac{d_A \Rightarrow}{0 \le d_C < 1}$ $\frac{0 \le d_C < 1}{-1 \le d_C < 2}$ $-2 \le d_C < 3$	-9≥ > 0.5 0.9	10≥ >-1 0.5 0.9	12 >-1	2≥ >-1	3≥ >-	142 >-	15≥ >-1	l6≥ >-]	17≥ >-	8≥ >-]	19≥ >-2	20≥ >-:	21≥ >	-22≥ >-25
$\frac{d_A \Rightarrow}{0 \leq d_C <-1}$ $\frac{-1 \leq d_C <-2}{-2 \leq d_C <-3}$ $-3 \leq d_C <-4$	-9≥ >-1 0.5 0.9 1.4	10≥ >-1 0.5 0.9 1.4	1≥ >-1	2≥ >-1	3≥ >-	142 >-	15≥ >-1	l6≥ >-1	7≥ >	8≥ >-1	19≥ >-2	20≥ >	21≥ >	-22≥ >-25
$\begin{array}{c} \hline d_{A} \Rightarrow \\ \hline 0 \leq d_{C} < 1 \\ \hline -1 \leq d_{C} < 2 \\ \hline -2 \leq d_{C} < 3 \\ \hline -3 \leq d_{C} < 4 \\ \hline -4 \leq d_{C} < 5 \end{array}$	-9≥ >- 0.5 0.9 1.4 1.9	10≥ >-1 0.5 0.9 1.4 1.9	1≥ >-1	12≥ >-1	3≥ >-	14≥ >-	15≥ >->	16≥ >-1	17≥ >-	8≥ >-1	19≥ >-2	20≥ >	212 >	-22≥ >-25
$\frac{d_A \Rightarrow}{0 \le d_C <-1}$ $\frac{-1 \le d_C <-2}{-2 \le d_C <-3}$ $\frac{-3 \le d_C <-4}{-4 \le d_C <-5}$ $\frac{-5 \le d_C <-6}{-5 \le d_C <-6}$	-9≥ >- 0.5 0.9 1.4 1.9 1.2	10≥ >-1 0.5 0.9 1.4 1.9	0.4	12≥ >-1	3≥ >-	142 >-	15≥ >-	16≥ >-1	17≥ >		l9≥ >-2	20≥ >	21≥ >	-222 >-25
$\frac{d_A \Rightarrow}{0 \le d_C <-1}$ $\frac{-1 \le d_C <-2}{-2 \le d_C <-3}$ $\frac{-3 \le d_C <-4}{-4 \le d_C <-5}$ $\frac{-5 \le d_C <-6}{-6 \le d_C <-7}$	-9≥ >-1 0.5 0.9 1.4 1.9 1.2 7.5	10≥ >-1 0.5 0.9 1.4 1.9 5.1	0.4 10.7	22 >-1	3≥ >- 	14≥ > 0.2	15≥ >	62 >-1	172 >	82 >-1	l9≥ >-2	202 >	212 >	-22≥ >-25
$\begin{array}{c} d_{A} \Rightarrow \\ \hline \\ d_{A} \Rightarrow \\ 0 \leq d_{C} <-1 \\ \hline \\ -1 \leq d_{C} <-2 \\ \hline \\ -2 \leq d_{C} <-3 \\ \hline \\ -3 \leq d_{C} <-3 \\ \hline \\ -4 \leq d_{C} <-5 \\ \hline \\ -5 \leq d_{C} <-6 \\ \hline \\ -6 \leq d_{C} <-7 \\ \hline \\ -7 \leq d_{C} <-8 \end{array}$	-9≥ >- 0.5 0.9 1.4 1.9 1.2 7.5 13.8	10≥ >-1 0.5 0.9 1.4 1.9 5.1 10.1	0.4 10.7 21.1	22 >-1 3.8 7.5	3≥ >- 1.1 2.3	0.2 0.3		162 >	172 >	82 >-1	I9≥ >-⁄2	202 >	21≥ >	-222 >-25
$\begin{array}{c} d_{A} \Rightarrow \\ \hline \\ d_{A} \Rightarrow \\ \hline \\ 0 \leq d_{C} < -1 \\ \hline \\ -1 \leq d_{C} < -2 \\ \hline \\ -2 \leq d_{C} < -3 \\ \hline \\ -3 \leq d_{C} < -4 \\ \hline \\ -4 \leq d_{C} < -5 \\ \hline \\ -5 \leq d_{C} < -6 \\ \hline \\ -6 \leq d_{C} < -7 \\ \hline \\ -7 \leq d_{C} < -8 \\ \hline \\ -8 \leq d_{C} < -9 \end{array}$	-9≥ >- 0.5 0.9 1.4 1.9 1.2 7.5 13.8 20.1	10≥ >-1 0.5 0.9 1.4 1.9 5.1 10.1 15.2	11≥         >-1           0.4         10.7           21.1         31.4	22 >-1 3.8 7.5 11.3	3≥ >- 1.1 2.3 3.4	14≥         >-           0.2         0.3           0.5         0.5		62 >-1	172 >	82 >-1	19≥ >~2			-22≥ >-25
$\begin{array}{c} d_{A} \Rightarrow \\ \hline d_{A} \Rightarrow \\ \hline 0 \leq d_{C} <-1 \\ \hline -1 \leq d_{C} <-2 \\ \hline -2 \leq d_{C} <-3 \\ \hline -3 \leq d_{C} <-3 \\ \hline -3 \leq d_{C} <-4 \\ \hline -4 \leq d_{C} <-5 \\ \hline -5 \leq d_{C} <-6 \\ \hline -6 \leq d_{C} <-7 \\ \hline -7 \leq d_{C} <-8 \\ \hline -8 \leq d_{C} <-9 \\ \hline -9 \leq d_{C} <-10 \end{array}$	-9≥ >- 0.5 0.9 1.4 1.9 1.2 7.5 13.8 20.1 28.3	10≥ >-1 0.5 0.9 1.4 1.9 5.1 10.1 15.2 12.8	11≥ >-1 0.4 10.7 21.1 31.4 19.7	22 >-1 3.8 7.5 11.3 7.0	3≥ >- 1.1 2.3 3.4 1.9	14≥         >-           0.2         0.3           0.5         0.6		62 >	172 >	82 >-1	l9≥ >-2		212 >	-222 >-25
$\begin{array}{c} d_{A} \Rightarrow \\ \hline d_{A} \Rightarrow \\ \hline 0 \leq d_{C} <-1 \\ \hline -1 \leq d_{C} <-2 \\ \hline -2 \leq d_{C} <-3 \\ \hline -3 \leq d_{C} <-4 \\ \hline -4 \leq d_{C} <-5 \\ \hline -5 \leq d_{C} <-6 \\ \hline -6 \leq d_{C} <-7 \\ \hline -7 \leq d_{C} <-8 \\ \hline -8 \leq d_{C} <-9 \\ \hline -9 \leq d_{C} <-10 \\ \hline -10 \leq d_{C} <-11 \end{array}$	$-9\geq$ > 0.5 0.9 1.4 1.9 1.2 7.5 13.8 20.1 28.3 36.5	ID≥         >-1           0.5         0.9           1.4         1.9           5.1         10.1           15.2         12.8           10.3         10.3	11≥         >-1           0.4         10.7           21.1         31.4           19.7         7.9	22 >-1 3.8 7.5 11.3 7.0 2.8	3≥ >- 1.1 2.3 3.4 1.9 0.4	14≥         >-           0.2         0.3           0.5         0.6           0.8				82 >-1	I9≥ >-/2			-222 >-25
$\begin{array}{c} d_{A} \Rightarrow \\ \hline d_{A} \Rightarrow \\ \hline 0 \leq d_{C} < 1 \\ \hline -1 \leq d_{C} < 2 \\ \hline -2 \leq d_{C} < 3 \\ \hline -3 \leq d_{C} < 4 \\ \hline -4 \leq d_{C} < 5 \\ \hline -5 \leq d_{C} < 6 \\ \hline -6 \leq d_{C} < 7 \\ \hline -7 \leq d_{C} < 8 \\ \hline -8 \leq d_{C} < 9 \\ \hline -9 \leq d_{C} < 10 \\ \hline -10 \leq d_{C} < 11 \\ \hline -11 \leq d_{C} < 12 \end{array}$	$-9\geq$ >-1 0.5 0.9 1.4 1.9 1.2 7.5 13.8 20.1 28.3 36.5 22.7	10≥         >-1           0.5         0.9           1.4         1.9           5.1         10.1           15.2         12.8           10.3         18.6	11≥         >-1           0.4         10.7           21.1         31.4           19.7         7.9           29.9         29.9	22 >-1 3.8 7.5 11.3 7.0 2.8 13.5	3≥ >- <i>1.1</i> <i>2.3</i> <i>3.4</i> <i>1.9</i> <i>0.4</i> <i>4.3</i>	14≥         >-           0.2         0.3           0.5         0.6           0.8         0.7		6≥ >-1 	172 >	82 >-1	19≥ >-/2			-222 >-25
$\begin{array}{c} d_{A} \Rightarrow \\ \hline d_{A} \Rightarrow \\ \hline 0 \leq d_{C} <-1 \\ \hline -1 \leq d_{C} <-2 \\ \hline -2 \leq d_{C} <-3 \\ \hline -3 \leq d_{C} <-4 \\ \hline -4 \leq d_{C} <-5 \\ \hline -5 \leq d_{C} <-6 \\ \hline -6 \leq d_{C} <-7 \\ \hline -7 \leq d_{C} <-8 \\ \hline -8 \leq d_{C} <-9 \\ \hline -9 \leq d_{C} <-10 \\ \hline -10 \leq d_{C} <-11 \\ \hline -11 \leq d_{C} <-12 \\ \hline -12 \leq d_{C} <-13 \\ \end{array}$	-9≥ >- 0.5 0.9 1.4 1.9 1.2 7.5 13.8 20.1 28.3 36.5 22.7 15.4	ID≥         >-1           0.5         0.9           1.4         1.9           5.1         10.1           15.2         12.8           10.3         18.6           12.4	11≥         >-1           0.4         10.7           21.1         31.4           19.7         7.9           29.9         21.3	22 >-1 3.8 7.5 11.3 7.0 2.8 13.5 12.2	3≥ >- 1.1 2.3 3.4 1.9 0.4 4.3 6.4	14≥         >-           0.2         0.3           0.5         0.6           0.8         0.7           16.0	152 >	62 >	1.3	82 >-1	0.3	0.3		-222 >-25
$\begin{array}{c} d_{A} \Rightarrow \\ \hline d_{A} \Rightarrow \\ \hline 0 \leq d_{C} < 1 \\ \hline -1 \leq d_{C} < 2 \\ \hline -2 \leq d_{C} < 3 \\ \hline -3 \leq d_{C} < 4 \\ \hline -4 \leq d_{C} < 5 \\ \hline -5 \leq d_{C} < 6 \\ \hline -6 \leq d_{C} < 7 \\ \hline -7 \leq d_{C} < 6 \\ \hline -6 \leq d_{C} < 7 \\ \hline -7 \leq d_{C} < 8 \\ \hline -8 \leq d_{C} < 9 \\ \hline -9 \leq d_{C} < 10 \\ \hline -10 \leq d_{C} < 11 \\ \hline -11 \leq d_{C} < 12 \\ \hline -12 \leq d_{C} < 13 \\ \hline -13 \leq d_{C} < 14 \end{array}$	$-9\ge$ >- 0.5 0.9 1.4 1.9 1.2 7.5 13.8 20.1 28.3 36.5 22.7 15.4 8.2	ID≥         >-1           0.5         0.9           1.4         1.9           5.1         10.1           15.2         12.8           10.3         18.6           12.4         6.2	11≥ >-1 0.4 10.7 21.1 31.4 19.7 7.9 29.9 21.3 12.6	22 >-1 3.8 7.5 11.3 7.0 2.8 13.5 12.2 11.0	3≥ >- 1.1 2.3 3.4 1.9 0.4 4.3 6.4 8.5	14≥         >-           0.2         0.3           0.5         0.6           0.7         16.0           31.3         >	152 >-1	6≥ >-1 	17≥         >-1           1.3         2.6		19≥ >-2 	0.3		-222 >-25
$\begin{array}{c} d_{A} \Rightarrow \\ \hline \\ d_{A} \Rightarrow \\ \hline \\ 0 \leq d_{C} < 1 \\ \hline \\ -1 \leq d_{C} < 2 \\ -2 \leq d_{C} < 3 \\ \hline \\ -3 \leq d_{C} < 4 \\ \hline \\ -4 \leq d_{C} < 5 \\ \hline \\ -5 \leq d_{C} < 6 \\ \hline \\ -6 \leq d_{C} < 7 \\ \hline \\ -7 \leq d_{C} < 8 \\ \hline \\ -8 \leq d_{C} < 9 \\ \hline \\ -9 \leq d_{C} < 10 \\ \hline \\ -10 \leq d_{C} < 11 \\ \hline \\ -11 \leq d_{C} < 12 \\ \hline \\ -12 \leq d_{C} < 13 \\ \hline \\ -13 \leq d_{C} < 14 \\ \hline \\ -14 \leq d_{C} < 15 \\ \end{array}$	$-9\geq$ >- $1.4$ 0.5 0.9 1.4 1.9 1.2 7.5 13.8 20.1 28.3 36.5 22.7 15.4 8.2 1.0	102         >-1           0.5         0.9           1.4         1.9           5.1         10.1           15.2         12.8           10.3         18.6           12.4         6.2	11≥         >-1           0.4         10.7           21.1         31.4           19.7         7.9           29.9         21.3           12.6         3.9	2≥ >-1 3.8 7.5 11.3 7.0 2.8 13.5 12.2 11.0 9.7	3≥ >- 1.1 2.3 3.4 1.9 0.4 4.3 6.4 8.5 10.7	14≥         >-           0.2         0.3           0.5         0.6           0.7         16.0           31.3         46.6	152 >	<i>l</i> 6≥ >1	17≥ > 	82 >-1	19≥ >-2 	02 >		-222 >-25
$\begin{array}{c} d_{A} \Rightarrow \\ \hline \\ d_{A} \Rightarrow \\ \hline \\ 0 \leq d_{C} < 1 \\ \hline \\ -1 \leq d_{C} < 2 \\ \hline \\ -2 \leq d_{C} < -3 \\ \hline \\ -3 \leq d_{C} < 4 \\ \hline \\ -4 \leq d_{C} < -5 \\ \hline \\ -5 \leq d_{C} < 6 \\ \hline \\ -6 \leq d_{C} < 7 \\ \hline \\ -7 \leq d_{C} < 8 \\ \hline \\ -8 \leq d_{C} < 9 \\ \hline \\ -9 \leq d_{C} < 10 \\ \hline \\ -10 \leq d_{C} < 11 \\ \hline \\ -11 \leq d_{C} < 12 \\ \hline \\ -12 \leq d_{C} < 13 \\ \hline \\ -13 \leq d_{C} < 14 \\ \hline \\ -14 \leq d_{C} < 15 \\ \hline \\ -15 \leq d_{C} < 16 \end{array}$	$-9\ge$ >-7 0.5 0.9 1.4 1.9 1.2 7.5 13.8 20.1 28.3 36.5 22.7 15.4 8.2 1.0 0.6	ID≥         >-1           0.5         0.9           1.4         1.9           5.1         10.1           15.2         12.8           10.3         18.6           12.4         6.2	11≥         >-1           0.4         10.7           21.1         31.4           19.7         7.9           29.9         21.3           12.6         3.9           2.6	2≥ >-1 3.8 7.5 11.3 7.0 2.8 13.5 12.2 11.0 9.7 7.1	3≥ >- 1.1 2.3 3.4 1.9 0.4 4.3 6.4 8.5 10.7 8.8	14≥         >-           0.2         0.3           0.5         0.6           0.7         16.0           31.3         46.6           34.1	152 >	6≥ >-1 	17≥ > 	82 >-1	19≥ >-2 	0.3 0.6 1.0 5.1	212 >	-22≥ >-25
$\begin{array}{c} d_{A} \Rightarrow \\ \hline \\ d_{A} \Rightarrow \\ \hline \\ 0 \leq d_{C} < 1 \\ \hline \\ -1 \leq d_{C} < 2 \\ \hline \\ -2 \leq d_{C} < 3 \\ \hline \\ -3 \leq d_{C} < 4 \\ \hline \\ -4 \leq d_{C} < 5 \\ \hline \\ -5 \leq d_{C} < 6 \\ \hline \\ -6 \leq d_{C} < 7 \\ \hline \\ -7 \leq d_{C} < 8 \\ \hline \\ -8 \leq d_{C} < 9 \\ \hline \\ -9 \leq d_{C} < 10 \\ \hline \\ -10 \leq d_{C} < 11 \\ \hline \\ -11 \leq d_{C} < 12 \\ \hline \\ -13 \leq d_{C} < 14 \\ \hline \\ -14 \leq d_{C} < 15 \\ \hline \\ -15 \leq d_{C} < 16 \\ \hline \\ -16 \leq d_{C} < 17 \\ \end{array}$	$-9\ge$ >	10≥         >-1           0.5         0.9           1.4         1.9           5.1         10.1           15.2         12.8           10.3         18.6           12.4         6.2	11≥         >-1           0.4         10.7           21.1         31.4           19.7         7.9           29.9         21.3           12.6         3.9           2.6         1.3	22 >-1 3.8 7.5 11.3 7.0 2.8 13.5 12.2 11.0 9.7 7.1 4.5	3≥ >- 1.1 2.3 3.4 1.9 0.4 4.3 6.4 8.5 10.7 8.8 7.0	14≥         >-           0.2         0.3           0.5         0.6           0.7         16.0           31.3         46.6           34.1         21.5	15≥ > 15≥ > 15≥ > 15≥ > 15≥ > 15≥ > 15≥ > 15≥ > 15≥ > 11.6 8.7	6≥ >-1 0.2 2.7 5.2 7.8 10.5 13.3	17≥ > 1.3 2.6 3.9 10.9 18.0	82 >-1	19≥ >-2 	02 >	21≥ > 	-22≥ >-25
$\begin{array}{c} d_{A} \Rightarrow \\ 0 \leq d_{C} < 1 \\ \hline \\ -1 \leq d_{C} < 2 \\ \hline \\ -2 \leq d_{C} < 3 \\ \hline \\ -3 \leq d_{C} < 4 \\ \hline \\ -4 \leq d_{C} < 5 \\ \hline \\ -5 \leq d_{C} < 6 \\ \hline \\ -6 \leq d_{C} < 7 \\ \hline \\ -7 \leq d_{C} < 8 \\ \hline \\ -8 \leq d_{C} < 9 \\ \hline \\ -9 \leq d_{C} < 10 \\ \hline \\ -10 \leq d_{C} < 11 \\ \hline \\ -11 \leq d_{C} < 12 \\ \hline \\ -12 \leq d_{C} < 13 \\ \hline \\ -13 \leq d_{C} < 14 \\ \hline \\ -14 \leq d_{C} < 15 \\ \hline \\ -15 \leq d_{C} < 16 \\ \hline \\ -16 \leq d_{C} < 17 \\ \hline \\ -17 \leq d_{C} < 18 \end{array}$	$-9\geq$ >-7 0.5 0.9 1.4 1.9 1.2 7.5 13.8 20.1 28.3 36.5 22.7 15.4 8.2 1.0 0.6 0.3	ID≥         >-1           0.5         0.9           1.4         1.9           5.1         10.1           15.2         12.8           10.3         18.6           12.4         6.2	11≥         >-1           0.4         10.7           21.1         31.4           19.7         29.9           21.3         12.6           3.9         2.6           1.3         1.3	2≥ >-1 3.8 7.5 11.3 7.0 2.8 13.5 12.2 11.0 9.7 7.1 4.5 1.9	3≥ >- 1.1 2.3 3.4 1.9 0.4 4.3 6.4 8.5 10.7 8.8 7.0 5.1	14≥         >-           14≥         >-           0.2         0.3           0.5         0.6           0.8         0.7           16.0         31.3           46.6         34.1           21.5         9.0	15≥ >-1 15≥ >-1 15≥ >-1 11.6 8.7 5.8	6≥ >       0.2       2.7       5.2       7.8       10.5       13.3       16.0	17≥         >-           1.3         2.6           3.9         10.9           18.0         25.0	8≥ >-1 	19≥         >-2           0.3         0.6           1.0         3.0           5.0         7.1	20≥ >	21≥ > 0.2 0.4 0.6	-22≥ >-25

別表 17 環境領域{(600≤G<800)∩(30≤Tm,K<40)}の尤度表

$d_A \Rightarrow$	6≥	>5≥	>4	≥ >	3≥ :	>2≥	>1≥	: >	0≥	>-	1≥	>-2≥	>-	3≥ >	-4≥	>-52	≥ :	>-6≥	>-'	7≥	>-8
0≤d _C <-1			_	2.0	7.5	24	4.2	14.6	43	.0	8.7										
-1≤d _C <-2				1.5	5.6	18	3.2	11.0	34	.9	13.9		5.9	7.5	1.	1	0.6				
-2≤d _C <-3				1.0	3.7	12	2.1	7.3	26	.8	19.2	1	1.7	14.9	2.	1	1.1				
<i>-3≤d</i> _C <-4				0.5	1.9	6	.1	3.7	18	.7	24.5	1	7.6	22.3	3.	2	1.6				
-4≤d _C <-5									10	.6	29.8	2	23.4	29.8	4.	.3	2.1				
<i>-5≤d</i> _C <-6						1							0.7	1.4	43	8.5	32.0	;	7.5	12	.9
-6≤d _C <-7													0.5	0.9	29	0.0	21.3	2	3.8	16	.7
-7≤d _C <-8													0.2	0.5	14	1.5	10.7	4	0.1	20	.5
-8≤d _C <-9																		5	6.4	24	.4
-9≤d _C <-10															3.	.8	16.0	3	5.6	24	.0
-10≤d _C <-11															7.	.7	32.1	1	4.7	23	.7
-11≤d _C <-12																			5.5	24	.4
<i>-12≦d_C&lt;-13</i>																		1	3.7	16	.3
<i>-13≦d_C&lt;-14</i>																		1	1.8	8.	1
<i>-14≤d</i> _C <-15																					
-15≤dc<-16																					
<i>-16≤d</i> _C < <i>-</i> 17																					
-17≤d _C <-18																					
-18≤d _C <-19																					
$d_A \Rightarrow$	-8≥	>-9≥	2 >-1	0≥ >-	11≥ >	-12≥	>-13	≥ >-	14≥	>-1	5≥	>-16≥	>-1	7≥ >	-18≥	>-19	)≥ ⇒	-20≥	>-2	1≥	>-22
$0 \leq d_C < 1$					<u> </u>																
-1≤d _C <-2					- - -																
<i>-2≤d</i> _C <-3									-												
<i>-3≤d</i> _C <-4					   	_												_		<u> </u>	
<i>-4≦d</i> _C <-5					<u> </u>	_			<u> </u>			_		 	_			_		<u>(                                    </u>	
-5≤d _C <-6	2.	0			<u> </u>	_			<u> </u>			_						_		<u> </u>	
-6 <i>≤</i> d _C <-7	5.	6	2.1		<u> </u>				<u> </u>									_			
-7 <i>≤</i> d _C <-8	9.	2	4.3		<u> </u>	-			-						-			_		<u> </u>	
-8 <i>≤</i> d _C <-9	12	.8	6.4									_		1 1 1				_			
-9≤d _C <-10	14	.4	5.4	0.3	<u> </u>				<u> </u>			_			-			_		<u> </u>	
<i>-10≤d_C&lt;-11</i>	16	5.0	4.5	0.6	<u> </u>	-			<u> </u>			_						_		<u> </u>	
<i>-11≤d_C&lt;-12</i>	28	3.3	11.7	8.6	8.8	7	.0	4.5	0.	.9	0.3							_		<u> </u>	
<i>-12≤d_C&lt;-13</i>	18	8.9	7.8	6.4	13.9	12	2.0	7.0	12	2.6	0.9	_	0.7					_		<u> </u>	
<i>-13≤d_C&lt;-14</i>	9.	4	3.9	4.2	18.9	12	7.0	9.5	24	1.3	1.4	_	1.3					_			
<i>-14≤d</i> _C <-15				2.0	24.0	22	2.0	12.0	36	6.0	2.0		2.0					_		<u> </u>	
<i>-15≤d</i> _C <-16				1.3	16.0	14	4.7	9.2	35	5.5	9.2		7.4	4.2	1	.8	0.6	_		<u> </u>	
<i>-16≦d_C&lt;-17</i>				0.7	8.0	7	.3	6.4	35	5.0	16.4		12.8	8.5	3	.6	1.2	_		<u> </u>	
<i>-17≤d_C&lt;-18</i>						-		3.6	34	1.5	23.6		18.2	12.7	5	.5	1.8	_			
-18≤d _C <-19			7.5	3.8	15.0	17	7.5	21.3	26	ó. <i>3</i>	5.0		2.5	1.3	1						

別表18 環境領域{(600≤G<800)∩(50≤T_{m,K}<60)}の尤度表

$d_A \Rightarrow$	6≥	>5≥	: >4	4≥ >	3≥ >	2≥ >	1≥ >	•0≥ >-	1≥ >-	-2≥ >-	3≥ >-	4≥ >	-5≥ >	≻-6≥	>-7≥	>-8
$0 \leq d_C < 1$			3.4		5.3	19.4	16.0	12.7	40.2	2.0	1.0					
-1≤d _C <-2			2.6		4.0	14.6	12.0	11.6	30.6	1.7	1.9	2.6	5.2	5.0	6	í.9
-2≤d _C <-3			1.7		2.7	9.7	8.0	10.5	21.1	1.5	2.9	5.	10.4	10.0	1.	3.8
<i>-3≦d</i> _C <-4			0.9		1.4	4.9	4.0	9.4	11.5	1.2	3.9	7.6	15.6	15.0	2	0.7
-4≤d _C <-5								8.3	1.9	1.0	4.9	10.2	20.9	19.9	2	7.7
-5≤d _C <-6										0.6	0.2	6.3	34.7	12.2	3	0.6
-6≤d _C <-7										0.4	0.1	4.2	23.4	8.8	2	0.8
-7 <i>≤</i> d _C <-8										0.2	0.1	2.1	12.0	5.4	1	1.1
-8≤d _C <-9													0.7	2.0	1	.3
-9 <i>≤</i> d _C <-10													0.3	1.0	6	).9
-10≤d _C <-11															6	).5
<i>-11≤d_C&lt;-12</i>														0.1	1	.9
<i>-12≤d</i> _C <-13													]	0.1	1	.3
<i>-13≤d</i> _C <-14																
<i>-14≤d</i> _C <-15																
-15≤d _C <-16																
<i>-16≤d</i> _C <-17						-						1				
-17≤d _C <-18																
-18≤d _C <-19																
$d_A \Rightarrow$	-8≥	>-9≥	≥ >-1	0≥ >-	11≥ >-	12≥ >-	13≥ >-	14≥ >-1	15≥ >-1	16≥ >-1	17≥ >-1	18≥ >-	19≥ >	-20≥ :	>-21≥	>-22
$0 \leq d_C < 1$																
-1≤d _C <-2	1	.4													-	
-2≤d _C <-3	2	.7														
<i>-3≤d</i> _C <-4	4	.0														
<i>-4≦d</i> _C <-5	5	.3				<u> </u>	<u> </u>									
-5≤d _C <-6	13	3.3	2.0		0.2											
<i>-6≤d</i> _C <-7	8	.9	3.5	6.9	15.1	5.4	2.0	0.4								
-7 <i>≤</i> d _C <-8	4	.4	5.1	13.9	30.0	10.7	4.0	0.9							-	
-8≤d _C <-9			6.7	20.8	45.0	16.1	6.0	1.3							-	
-9≤d _C <-10	9	.2	21.8	17.7	31.2	12.9	3.6	1.2								
-10≤d _C <-11	18	8.5	37.0	14.7	17.4	9.8	1.1	1.1								
-11≤d _C <-12	5	.4	16.3	16.9	26.3	20.4	10.3	1.3	0.7	0.3						
<i>-12≤d_C&lt;-13</i>	3	.6	10.9	11.3	17.6	13.6	8.3	12.0	9.4	9.1	2.2	0.7			-	
<i>-13≤d</i> _C <-14	1	.8	5.4	5.6	8.8	6.8	6.4	22.7	18.0	17.9	4.4	1.5				
<i>-14≤d</i> _C <-15							4.4	33.3	26.7	26.7	6.7	2.2				
<i>-15≤d</i> _C <-16							3.4	24.9	18.8	19.2	11.4	7.6	7.3	6.3	1	1.0
14 11 18					1	1	1 22	166	110	110	161	129	147	126		. 1
$-16 \le d_C < -17$							2.5	10.0	11.0	11.0	10.1	12.7	14.7	12.0		2.1
-16≤d _C <-17 -17≤d _C <-18							2.5 1.3	8.2	3.1	4.4	20.8	18.2	22.0	18.9		8.1 8.1

別表 19 環境領域{(G≥800)∩(30≤Tm,K<40)}の尤度表

$d \Rightarrow$	6>	>5>	>4>			.2>	>1>		)>	(	1>	>-2	> >-	3>	-4>	>-5	>	>-6>	~	7>	>-8
0 <d_<-1< td=""><td>0.5</td><td>1</td><td>3</td><td>62</td><td>30.4</td><td>22</td><td>5 1</td><td>11</td><td>13</td><td>7</td><td>96</td><td></td><td>28</td><td>0.7</td><td></td><td> </td><td>-</td><td></td><td></td><td>-</td><td></td></d_<-1<>	0.5	1	3	62	30.4	22	5 1	11	13	7	96		28	0.7			-			-	
-1 <dc<-?< td=""><td>0.3</td><td>0</td><td>9</td><td>4.6</td><td>22.8</td><td>17</td><td>6 8</td><td>3.5</td><td>15</td><td>./</td><td>8.9</td><td></td><td>3.7</td><td>3.5</td><td>2</td><td>8</td><td>27</td><td></td><td>2.8</td><td>4</td><td>0</td></dc<-?<>	0.3	0	9	4.6	22.8	17	6 8	3.5	15	./	8.9		3.7	3.5	2	8	27		2.8	4	0
-2 <da<-3< td=""><td>0.2</td><td></td><td>6</td><td>31</td><td>15.2</td><td>11</td><td>7 4</td><td>5.9</td><td>17</td><td>8</td><td>8.2</td><td>+</td><td>4.6</td><td>6.4</td><td>5</td><td>6</td><td>5.4</td><td></td><td>5.6</td><td>8</td><td>0</td></da<-3<>	0.2		6	31	15.2	11	7 4	5.9	17	8	8.2	+	4.6	6.4	5	6	5.4		5.6	8	0
-3 <dc<-4< td=""><td>0.1</td><td>0</td><td></td><td>1.6</td><td>7.6</td><td>5.9</td><td></td><td>3.3</td><td>19</td><td>.8</td><td>7.4</td><td>+</td><td>5.4</td><td>9.3</td><td>8</td><td>4</td><td>8.1</td><td></td><td>8.4</td><td>12</td><td>.0</td></dc<-4<>	0.1	0		1.6	7.6	5.9		3.3	19	.8	7.4	+	5.4	9.3	8	4	8.1		8.4	12	.0
-4 <dc<-5< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>(</td><td>).7</td><td>21</td><td>.9</td><td>6.7</td><td></td><td>6.3</td><td>12.2</td><td>11</td><td></td><td>10.7</td><td>7 7</td><td>1.1</td><td>15</td><td>.9</td></dc<-5<>							(	).7	21	.9	6.7		6.3	12.2	11		10.7	7 7	1.1	15	.9
-5 <dc<-6< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>0.8</td><td></td><td>3.6</td><td>1.5</td><td>4</td><td>3</td><td>28.2</td><td>2 1</td><td>1.2</td><td>30</td><td>.5</td></dc<-6<>						1					0.8		3.6	1.5	4	3	28.2	2 1	1.2	30	.5
-6≤d _C <-7							1				0.5	$\uparrow$	2.4	1.0	2	9	18.8	3 1	5.1	27	.7
-7≤d _C <-8		_									0.3	+	1.2	0.5	1	.4	9.4	1	9.0	24	.9
-8≤d _C <-9																		2	2.9	22	.2
<i>-9≤d</i> _C <-10																	0.1	1	1.6	12	.4
-10≤d _C <-11															1		0.2		0.2	2.	6
-11≤d _C <-12															1				2.5	3.	7
-12≤d _C <-13																			1.7	2.	4
-13≤d _C <-14																			0.8	1.	2
-14≤d _C <-15																					
-15≤d _C <-16						-															
<i>-16≤d_C&lt;-17</i>									1											1	
-17≤d _C <-18																				1	
-18≤d _C <-19																					
$d_A \!\! \Rightarrow$	-8≥	>-9≥	>-10	≥ >-1	1≥ >-	12≥	>-13≥	>-1	14≥	>-1	5≥	>-16	5≥ >-1	7≥ >	-18≥	>-19	)≥	>-20≥	>-2	1≥	>-22
$0 \leq d_C < 1$									<u> </u>												
-1≤d _C <-2	0.7	' 0	.2																		
<i>-2≦d_C&lt;-3</i>	1.3	0	.4			<u> </u>					   									<u> </u>	
<i>-3≦d_C&lt;-4</i>	1.9	) 0	.6																		
-4≤dc<-5	2.6	5 0	0.7			<u> </u>			<u> </u>		 	_								<u>                                     </u>	
-5 <i>≤</i> d _C <-6	16	2 3	.6	0.3								_						_		<u> </u>	
-6 <i>≤</i> d _C <-7	16	3 9	.8	3.1	2.5							_								<u> </u>	
-7 <i>≤</i> d _C <-8	16	4 10	5.0	5.8	5.0							_			_						
-8 <i>≤</i> d _C <-9	16	5 2.	2.2	8.6	7.5		_					_			_	_		_			
<i>-9≤d</i> _C <-10	24.	7 2	9.8	9.5	9.6	2.0		0.1	<u> </u>		0.1	_		1				_		<u> </u>	
-10≤d _C <-11	32.	9 3	7.5	10.3	11.7	4.1		).2	<u> </u>		0.2	4						_		<u> </u>	
-11≤d _C <-12	3.7		4.8	11.4	20.7	22.	7 1	2.9	3.	2	3.3		0.8	0.3	-						
-12≤d _C <-13	2.5	9	.9	7.6	16.0	21.	7 1	3.0	16	0.6	5.3		2.3	0.6	0	.4					
-13≤d _C <-14	1.2	4	.9	3.8	11.3	20.	/ 1	3.1	30	0.0	7.3		3.8	1.0	0	.9				<u></u>	
-14≤d _C <-15			_		6.6	19.	/ 1	3.2	43	.4	9.2		5.3	1.3	1	.3	, .		0.0		
-15≤dc<-16					4.4	14.	2 1	2.2	34	. I . 7	10.0	5	9.3	10.2	3	.0	1.3		0.8		
$-10 \le d_C < -17$					2.2	8.0		1.2	24	./	12	5	13.3	19.0	4	./	2.5		1.3		
$-1/\leq d_C < -18$			,	17	2.2	3.(		0.2	15	.4	13.	/	1/.3	27.8	6	.4	3.8	1	2.3	7	1
-18≤d _C <-19			.1	1./	2.2	1 0.0	)	2.2	¦ /.	ð	1.1		5.0	11.7	20	).1	23.1		:0.1	1.	1

別表 20 環境領域{(G≥800)∩(40≤Tm,K<50)}の尤度表

$d_A \Rightarrow$	6≥	>52	≥ >4	4≥ >	-3≥ >	2≥ >	1≥	>0≥ >-	1≥ >-	-2≥ >-	3≥ >-	4≥ >-	-5≥ >-	-6≥ >	-7≥ >-8
0≤d _C <-1			0.1	1.4	9.8	22.8	14.2	26.3	20.8	4.3	0.2	0.1			1
-1≤d _C <-2			0.1	1.1	7.3	17.1	10.7	26.6	23.8	7.9	4.1	0.5	0.5		0.2
-2≤d _C <-3			0.1	0.7	4.9	11.4	7.3	26.8	26.9	11.6	8.1	0.9	1.0		0.4
<i>-3≤d</i> _C <-4			0.1	0.4	2.5	5.7	3.9	27.0	29.9	15.3	12.1	1.3	1.5		0.6
-4≤d _C <-5					1		0.4	27.2	32.9	18.9	16.0	1.6	2.1		0.8
-5≤d _C <-6				1	1				0.4	10.6	5.7	5.7	22.9	5.7	17.2
-6≤d _C <-7									0.3	7.0	3.9	3.9	17.6	28.5	15.3
-7 <i>≤</i> d _C <-8									0.1	3.5	2.1	2.1	12.3	51.3	13.5
-8≤d _C <-9											0.3	0.3	7.0	74.1	11.6
-9≤dc<-10											0.2	0.8	4.9	40.7	17.8
-10≤d _C <-11												1.2	2.9	7.3	24.1
<i>-11≤d_C&lt;-12</i>													0.1	3.2	10.4
<i>-12≤d</i> _C <-13					Ì						1		0.1	2.2	7.0
<i>-13≤d</i> _C <-14														1.1	3.5
<i>-14≤d</i> _C <-15															
<i>-15≤d</i> _C <-16					   										1
<i>-16≤d</i> _C <-17										1					1
<i>-17≤d</i> _C <-18															
<i>-18≤d</i> _C <-19															- - -
$d_A \Rightarrow$	-8≥	>-92	≥ >-1	10≥ >-	11≥ >-	12≥ >-	13≥ >	-14≥ >-	15≥ >-	16≥ >-	17≥ >-1	18≥ >-	19≥ >-	20≥ >-	21≥ >-22
$0 \leq d_C < 1$															
-1≤d _C <-2															
<i>-2≤d</i> _C <-3										-					
<i>-3≦d</i> _C <-4															
-4≤dc<-5															
<i>-5≤d</i> _C <-6	25	5.6	6.2												
<i>-6≤d</i> _C <-7	18	8.5	4.9												
-7 <i>≤</i> d _C <-8	11	1.4	3.7												
-8≤d _C <-9	4	.3	2.4												
-9≤dc<-10	18	8.3	11.8	2.0	2.2	1.0	0.2						<u> </u>		
-10≤d _C <-11	32	2.2	21.2	4.1	4.5	2.0	0.4								
-11≤d _C <-12	14	4.0	18.9	10.4	11.3	13.2	6.8	2.4	6.0	2.7	0.6				
<i>-12≤d</i> _C <-13	9	.3	12.6	7.2	13.8	16.3	14.5	9.5	4.2	2.3	1.1				
<i>-13≤d</i> _C <-14	4	.7	6.3	3.9	16.4	19.3	22.3	16.6	2.5	1.8	1.6				
<i>-14≤d</i> _C <-15				0.7	18.9	22.4	30.1	23.8	0.7	1.4	2.1				
<i>-15≤d</i> _C <-16				0.6	13.4	16.4	21.2	22.4	5.2	8.8	10.0	1.4	0.5	0.1	
<i>-16≤d</i> _C <-17				0.5	7.9	10.3	12.4	21.0	9.6	16.2	18.0	2.9	1.0	0.3	
<i>-17≤d</i> _C <-18				0.4	21	43	35	19.6	141	23 5	25.9	4.3	1.6	0.4	
				0.4	2.7	7.5	5.5	17.0	17.1	20.0	20.9				

別表 21 環境領域{(G≥800)∩(50≤Tm,K<60)}の尤度表